• 제목/요약/키워드: Experimental designs

검색결과 742건 처리시간 0.03초

The Effects of Smart Media Based STEAM Program of 'Chicken Life Cycle' on Academic Achievement, Scientific Process Skills and Affective Domain of Elementary School Students (스마트미디어 기반의 '닭의 한살이' 융합인재교육(STEAM) 수업이 초등학생의 학업성취도, 과학 탐구 능력 및 정의적 영역에 미치는 영향)

  • Choi, Youngmi;Yang, Ji Hye;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • 제35권2호
    • /
    • pp.166-180
    • /
    • 2016
  • This paper examines the effects on academic achievement, scientific process skills and affective domain for elementary students learning the 'Chicken life cycle' through traditional science class versus a smart media based STEAM approach. Students designed and built a hatching jar and created a smart media content for chickens using time-lapse technology. This STEAM program was developed to improve their scientific concepts of animals over nine periods of classes using integrated education methods. The experimental study took place in the third grade of public schools in a province, with the STEAM approach applied in 2 classes (44 students) and the traditional discipline approach implemented in 2 classes (46 students). The STEAM education significantly influenced the improvement of academic achievements, basic scientific process skills and affective domain. The results suggest that this STEAM approach for teaching scientific concepts of animal life cycles has the performance in terms of knowledge, skills and affect gain achievements in elementary school students' learning when compared to a traditional approach. Moreover, the smart media based STEAM program is helpful to lead students to engage in integrated problem-solving designs and learning science and technology.

Experience with an On-board Weighing System Solution for Heavy Vehicles

  • Radoicic, Goran;Jovanovic, Miomir;Arsic, Miodrag
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.787-797
    • /
    • 2016
  • Mining, construction, and other special vehicles for heavy use are designed to work under high-performance and off-road working conditions. The driving and executive mechanisms of the support structures and superstructures of these vehicles frequently operate under high loads. Such high loads place the equipment under constant risk of an accident and can jeopardize the dynamic stability of the machinery. An experimental investigation was conducted on a refuse collection vehicle. The aim of this research was to determine the working conditions of a real vehicle: the kinematics of the waste container, that is, a hydraulic rotate drum for waste collection; the dynamics of the load manipulator (superstructure); the vibrations of the vehicle mass; and the strain (stress) of the elements responsible for the supporting structure. For an examination of the force (weight) on the rear axle of a heavy vehicle, caused by its own weight and additional load, a universal measurement system is proposed. As a result of this investigation, we propose an alternative system for continuous vehicle weighing during waste collection while in motion, that is, an on-board weighing system, and provide suggestions for measuring equipment designs.

An Anomaly Detection Framework Based on ICA and Bayesian Classification for IaaS Platforms

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3865-3883
    • /
    • 2016
  • Infrastructure as a Service (IaaS) encapsulates computer hardware into a large amount of virtual and manageable instances mainly in the form of virtual machine (VM), and provides rental service for users. Currently, VM anomaly incidents occasionally occur, which leads to performance issues and even downtime. This paper aims at detecting anomalous VMs based on performance metrics data of VMs. Due to the dynamic nature and increasing scale of IaaS, detecting anomalous VMs from voluminous correlated and non-Gaussian monitored performance data is a challenging task. This paper designs an anomaly detection framework to solve this challenge. First, it collects 53 performance metrics to reflect the running state of each VM. The collected performance metrics are testified not to follow the Gaussian distribution. Then, it employs independent components analysis (ICA) instead of principal component analysis (PCA) to extract independent components from collected non-Gaussian performance metric data. For anomaly detection, it employs multi-class Bayesian classification to determine the current state of each VM. To evaluate the performance of the designed detection framework, four types of anomalies are separately or jointly injected into randomly selected VMs in a campus-wide testbed. The experimental results show that ICA-based detection mechanism outperforms PCA-based and LDA-based detection mechanisms in terms of sensitivity and specificity.

Effective flexural rigidities for RC beams and columns with steel fiber

  • Bengar, Habib Akbarzadeh;Kiadehi, Mohammad Asadi;Shayanfar, Javad;Nazari, Maryam
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.453-465
    • /
    • 2020
  • Influences of different variables that affect the effective flexural rigidity of reinforced concrete (RC) members are not considered in the most seismic codes. Furthermore, in the last decades, the application of steel fibers in concrete matrix designs has been increased, requiring development of an accurate analytical procedure to calculate the effective flexural rigidity of steel fiber reinforced concrete (SFRC) members. In this paper, first, a nonlinear analytical procedure is proposed to calculate the SFRC members' effective flexural rigidity. The proposed model's accuracy is confirmed by comparing the results obtained from nonlinear analysis with those recorded from the experimental testing. Then a parametric study is conducted to investigate the effects of different parameters such as varying axial load and steel fiber are then investigated through moment-curvature analysis of various SFRC (normal-strength concrete) sections. The obtained results show that increasing the steel fiber volume percentage increases the effective flexural rigidity. Also it's been indicated that the varying axial load affects the effective flexural rigidity. Lastly, proper equations are developed to estimate the effective flexural rigidity of SFRC members.

Mechanical properties of blended cements at elevated temperatures predicted using a fuzzy logic model

  • Beycioglu, Ahmet;Gultekin, Adil;Aruntas, Huseyin Yilmaz;Gencel, Osman;Dobiszewska, Magdalena;Brostow, Witold
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.247-255
    • /
    • 2017
  • This study aimed to develop a Rule Based Mamdani Type Fuzzy Logic (RBMFL) model to predict the flexural strengths and compressive strengths of blended cements under elevated temperatures. Clinoptilolite was used as cement substitution material in the experimental stage. Substitution ratios in the cement mortar mix designs were selected as 0% (reference), 5%, 10%, 15% and 20%. The data used in the modeling process were obtained experimentally, after mortar specimens having reached the age of 90 days and exposed to $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ temperatures for 3 hours. In the RBMFL model, temperature ($C^{\circ}$) and substitution ratio of clinoptilolite (%) were inputs while the compressive strengths and flexural strengths of mortars were outputs. Results were compared by using some statistical methods. Statistical comparison results showed that rule based Mamdani type fuzzy logic can be an alternative approach for the evaluation of the mechanical properties of concrete under elevated temperature.

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

Statistical Optimization of Medium Composition for Growth of Leuconostoc citreum

  • Kim, Hyun;Eom, Hyun-Ju;Lee, Jun-Soo;Seo, Jin-Ho;Han, Nam-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.68-72
    • /
    • 2005
  • Leuconostoc citreum is one of the representative strains of Leuconostoc spp. that show fast growth rates in fermented vegetables. Sequential experimental designs including the Plackett-Burman design, fractional factorial design, steepest ascent analysis, central composite design and response surface methodology were introduced tooptimize and improve the medium for Leuconostoc citreum. Fifteen medium ingredients were examined and glucose (20 g/l), yeast extract (12.5 g/l), sodium acetate trihydrate (6.12 g/l), potassium phosphate (42.55 g/l) and dibasic ammonium citrate (4.12 g/l)were chosen as the best components to give a critical and positive effect for cell-growth. The biomass was increased to 2.79 g/l (169%), compared to the 1.65 g/l in MRS medium.

  • PDF

An experimental Study on Shear Behavior of Reinforced Concrete Beams With Steel Fibrous (강섬유를 혼입한 철근콘크리트 보의 전단기둥에 관한 실험적 연구)

  • Bae, Ju-Seong;Kim, Kyoung-Soo;Kim, Jae-Wook;Cui, Yi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.557-560
    • /
    • 1999
  • In civil engineering and construction field, recently the great enhancement of new material and building technique have been made by many studies and reports. These studies have attracted many countries, since 1980's those study on reinforcement with steel fiber have been done by America, Japan and the other countries. Designs and proposals on building method have been applied, several universities and laboratory centers in our country have been studied, but the study on field application is short. Also a part of study on the shear behavior of reinforced concrete beams with steel fiber has accomplished. but up to this time, reliable establishment is undone. Therefore, this study is performed the static loading test to analysis shear failure behavior in reinforced concrete beams with steel fiber. we have observed the limit load of shear force, primary bending crack load, primary diagonal crack load, evaluating relative of load and steel, crack increase and failure shape according to increase of load. Through the exam and the observation of output, we estimate the shear failure behavior of SFRC beams according to fiber mixing amount.

  • PDF

A Study on the Improvement of Strength in No-Fines Concrete with Stone Dust (석분을 혼입한 무세골재 콘크리트의 강도 개선에 관한 연구)

  • 나성훈;조재병;임정순
    • Magazine of the Korea Concrete Institute
    • /
    • 제7권3호
    • /
    • pp.149-155
    • /
    • 1995
  • An experimental study was carried out to investigate the strength implovlng effect of stone dust in no fines concrete. The cement aggregate ratios of 1:6, 1:8 and 1:10 and several water-cemment ratios between 30% and 56% were chosen for the mix design of no-fines concrete. For the no-fines concrete with stone dust, the weight ratio of cement to stone dust 1:1 was adopted and super plasticizer, 1.5% of cement in weight, was used to obtain proper and workable state of concrete. The compressive and tensile strength test were performed and the results for the different mix designs were compared with each other. The results show that the compressive strength of no-fines concrete can be improved by 38% and the tensile strength by 17%~72% for the same w/c, when the same weight of stone dust as cement is mixed together.

An Experimental Study to Prevent Debonding Failure of Full-Scale RC Beam Strengthened with Multi-Layer CFS

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • 제16권6호
    • /
    • pp.867-873
    • /
    • 2004
  • It has been known that debonding failures between CFS(Carbon Fiber Sheet) and concrete in the strengthened RC beams are initiated by the peeling of the sheets in the region of combined large moment and shear forces, being accompanied by the large shear deformation after flexural cracks. These shear deformation effects are seldom occurred in small-scale model tests, but debondings due to the large shear deformation effects are often observed in a full-scale model tests. The premature debonding failure of CFS, therefore, must be avoided to confirm the design strength of full-scale RC beam in strengthening designs. The reinforcing details, so- called 'U-Shape fiber wrap at mid-span' which wrapped the RC flexural members around the webs and tension face at critical section with CFS additionally, were proposed in this study to prevent the debonding of CFS. Other reinforcing detail, so called 'U-Shape fiber wrap at beam end' were included in this tests and comparisons were made between them.