• Title/Summary/Keyword: Experimental data

Search Result 20,947, Processing Time 0.039 seconds

Character Recognition using Regional Structure

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.64-69
    • /
    • 2019
  • With the advent of the fourth industry, the need for office automation with automatic character recognition capabilities is increasing day by day. Therefore, in this paper, we study a character recognition algorithm that effectively recognizes a new experimental data character by using learning data characters. The proposed algorithm computes the degree of similarity that the structural regions of learning data characters match the corresponding regions of the experimental data character. It has been confirmed that satisfactory results can be obtained by selecting the learning data character with the highest degree of similarity in the matching process as the final recognition result for a given experimental data character.

Validation of RELAP5 MOD3.3 code for Hybrid-SIT against SET and IET experimental data

  • Yoon, Ho Joon;Al Naqbi, Waleed;Al-Yahia, Omar S.;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1926-1938
    • /
    • 2020
  • We validated the performance of RELAP MOD3.3 code regarding the hybrid SIT with available experimental data. The concept of the hybrid SIT is to connect the pressurizer to SIT to utilize the water inside SIT in the case of SBO or SB-LOCA combined with TLOFW. We investigated how well RELAP5 code predicts the physical phenomena in terms of the equilibrium time, stratification, condensation against Separate Effect Test (SET) data. We also conducted the validation of RELAP5 code against Integrated Effect Test (IET) experimental data produced by the ATLAS facility. We followed conventional approach for code validation of IET data, which are pre-test and post-test calculation. RELAP5 code shows substantial difference with changing number of nodes. The increase of the number of nodes tends to reduce the condensation rate at the interface between liquid and vapor inside the hybrid SIT. The environmental heat loss also contributes to the large discrepancy between the simulation results of RELAP5 and the experimental data.

Analysis of a Fire in an Apartment Building Using a Zone Model (ZONE MODEL을 이용한 아파트에서의 화재 해석)

  • 박진국;김충익;유홍선;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.2
    • /
    • pp.25-33
    • /
    • 1997
  • Fire hazards in an apartment building that represents the average households in Korean were investigated by conducting a full-scale experiment. This experiment attempts to analyze fire hazards using materials, and furnishings common to Korean housing stock. Experimental results are compared to the predictions of the C-FAST and smoke transport computer model. Comparisons between experimental data and C-FAST data are performed only to a living-room fire. Flashover occurred at approximately 380 seconds in a fire experinent, and at approximately 420 seconds in Zone-Model. Based on all of data between experimental data between experimental data and Zone-Model data, it is concluded that the safe egress time is at least 250 seconds.

  • PDF

A Study of Applicability of a RNG $k-\varepsilon$ Model (RNG $k-\varepsilon$ 모델의 적용성에 대한 연구)

  • Yang, Hei-Cheon;Ryou, Hong-Sun;Lim, Jong-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

Study on the Cargonation Properties of Fly Ash Concrete using a Vacuum Instrument

  • Jung, Sang-Hwa;Yoo, Sung-Won;Chae, Seong-Tae
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.186-192
    • /
    • 2007
  • Carbonation is one of the most important factors causing the corrosion of reinforcement concrete. Nevertheless, experimental studies on the concrete carbonation have not been carried out sufficiently because of the slow process of carbonation process. Therefore, this study adopts an experimental system exploiting a vacuum instrument that has been recently developed to accelerate carbonation instead of existing experimental system to conduct rapid carbonation tests on Portland cement and fly-ash cement concretes. Test results revealed that, compared to water-cement ratio of 40%, the carbonation depth increases from 103% to 138% for an increase of water-cement ratio from 45% to 60%. These results are larger than the carbonation depths obtained by mathematical model, and such difference is increasing with larger water-cement ratios. The results also indicated that larger fly-ash contents lead to sharp increase of the carbonation depth, which is in agreement with previous experimental researches. The adoption of the new accelerated carbonation test system enabled to shorten effectively the time required to produce experimental data compared to the existing carbonation test method. The experimental data obtained in this study together with ongoing acquisition of data using the new carbonation test method are expected to contribute in the understanding of the carbonation process of concrete structures in Korea.

Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD

  • Ozdogan, Muhammet;Sungur, Bilal;Namli, Lutfu;Durmus, Aydin
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.537-549
    • /
    • 2017
  • In this study, the turbulent flow around a bluff body for different wind velocities was investigated numerically by using its two- and three-dimensional models. These models were tested to verify the validity of the simulation by being compared with experimental results which were taken from the literature. Variations of non-dimensional velocities in different positions according to the bluff body height were analysed and illustrated graphically. When the velocity distributions were examined, it was seen that the results of both two- and three-dimensional models agree with the experimental data. It was also seen that the velocities obtained from two-dimensional model matched up with the experimental data from the ground to the top of the bluff body. Particularly, compared to the front part of the bluff body, results of the upper and back part of the bluff body are better. Moreover, after comparing the results from calculations by using different models with experimental data, the effect of multidimensional models on the obtained results have been analysed for different inlet velocities. The calculation results from the two-dimensional (2D) model are in satisfactory agreement with the calculation results of the three-dimensional model (3D) for various flow situations when comparing with the experimental data from the literature even though the 3D model gives better solutions.

Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP

  • Saridemir, Mustafa
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.489-498
    • /
    • 2016
  • In this paper, the flexural strength ($f_{fs}$) and splitting tensile strength ($f_{sts}$) of concrete containing different proportions of fly ash have been modeled by using gene expression programming (GEP). Two GEP models called GEP-I and GEP-II are constituted to predict the $f_{fs}$ and $f_{sts}$ values, respectively. In these models, the age of specimen, cement, water, sand, aggregate, superplasticizer and fly ash are used as independent input parameters. GEP-I model is constructed by 292 experimental data and trisected into 170, 86 and 36 data for training, testing and validating sets, respectively. Similarly, GEP-II model is constructed by 278 experimental data and trisected into 142, 70 and 66 data for training, testing and validating sets, respectively. The experimental data used in the validating set of these models are independent from the training and testing sets. The results of the statistical parameters obtained from the models indicate that the proposed empirical models have good prediction and generalization capability.

Genetic-fuzzy approach to model concrete shrinkage

  • da Silva, Wilson Ricardo Leal;Stemberk, Petr
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.109-129
    • /
    • 2013
  • This work presents an approach to model concrete shrinkage. The goal is to permit the concrete industry's experts to develop independent prediction models based on a reduced number of experimental data. The proposed approach combines fuzzy logic and genetic algorithm to optimize the fuzzy decision-making, thereby reducing data collection time. Such an approach was implemented for an experimental data set related to self-compacting concrete. The obtained prediction model was compared against published experimental data (not used in model development) and well-known shrinkage prediction models. The predicted results were verified by statistical analysis, which confirmed the reliability of the developed model. Although the range of application of the developed model is limited, the genetic-fuzzy approach introduced in this work proved suitable for adjusting the prediction model once additional training data are provided. This can be highly inviting for the concrete industry's experts, since they would be able to fine-tune their models depending on the boundary conditions of their production processes.

Computational Astrophysics: Connecting Laboratory Experiments to Observations

  • Kwak, Kyujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.65.5-66
    • /
    • 2017
  • In the history of astronomy, observed data were interpreted very frequently based upon data measured at laboratories. For example, all the spectroscopic observations were understood via spectroscopic measurements on nuclei, atoms, and molecules. Recently, computational astrophysics plays a role of bridging experimental data to observations, in particular via numerical modeling of complex astronomical phenomena. This presentation focuses on computational nuclear astrophysics that connects experimental data on nuclei to high-energy observation data obtained by X-ray and gamma-ray telescopes. As an example case, X-ray burst will be discussed. In this phenomenon, observed X-ray light curves and spectra can be modeled by stellar evolution calculations that take nuclear reactions of rare isotopes as input information. This presentation also works as an introduction to the following presentation that will provide more detailed discussion on the experimental aspect of X-ray burst.

  • PDF

Development of Effluent Concentration Estimation Equation from Treatment Wetland Experimental Data (수질개선용 인공습지 실험자료에 의한 유출수 농도 추정식 개발)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.86-92
    • /
    • 1999
  • Effluent concentration estimation equations for wetland system were developed throught statistical analysis of treatment wetland experimental data. Existin g empirical equations were reviewed for thier accuracy with experimental data, and compared with the estimatin equations. About 70 experimental data sets were used for multiple regression, and variables include influent concentration, hydraulic loading rate, average daily air temperature , and plant coverage. The estimatin equations developed for BOD5 , SS ,T-P, and T-N predicted effluent concentrations moderately well, and coefficient fo determination ($R^2$) for them was 0.74 , 0.60, 0.59 and 0.58 respectively. The equations obtained from same data but excluding plant coverage showed relatively lower $R^2$ than the former case, and it was 0.66, 0.52, 0.41 and 0.57 respectively. The EPA, WPCF , and Kadlec and Knight equations worked poorly and $R^2$ for them was significantly lower than the estimation equation developed in the study. The reason might be that the existing equations were oversimplified that they did ot include important parameters such as air temperature and plant coverage. Therefore, developing reasonable estimation equations from experiment under realistic condition is highly recommended rather than using exiting estimation equations.

  • PDF