• Title/Summary/Keyword: Experimental and Calculation Analysis Method

Search Result 417, Processing Time 0.029 seconds

An Analysis of the acoustic source and radiation acoustic field of centrifugal fans (원심팬 음원 및 방사 음향장 해석)

  • Jeon, Wan-Ho;Lee, Duck-Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.97-104
    • /
    • 1998
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. Lowson's method is used to predict the acoustic pressure in a free field. A DVM(discrete vortex method) is used to model the centrifugal fan and to calculate the flow field. In order to compare the experimental data, a centrifugal fan and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data.

  • PDF

Thermal Analysis of High Density Permanent Magnet Synchronous Motor Based on Multi Physical Domain Coupling Simulation

  • Chen, ShiJun;Zhang, Qi;He, Biao;Huang, SuRong;Hui, Dou-Dou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • In order to meet the thermal performance analysis accuracy requirements of high density permanent magnet synchronous motor (PMSM), a method of multi physical domain coupling thermal analysis based on control circuit, electromagnetic and thermal is presented. The circuit, electromagnetic, fluid, temperature and other physical domain are integrated and the temperature rise calculation method that considers the harmonic loss on the frequency conversion control as well as the loss non-uniformly distributed and directly mapped to the temperature field is closer to the actual situation. The key is to obtain the motor parameters, the realization of the vector control circuit and the accurate calculation and mapping of the loss. Taking a 48 slots 8 poles high density PMSM as an example, the temperature rise distribution of the key components is simulated, and the experimental platform is built. The temperature of the key components of the prototype machine is tested, which is in agreement with the simulation results. The validity and accuracy of the multi physical domain coupling thermal analysis method are verified.

A Study on the Numerical Analysis Variables of Rock Structures Subject to Dynamic Loads (동적 하중을 받는 암반 구조물의 수치해석 변수에 대한 고찰)

  • Ryu, Chang-Ha;Choi, Byung-Hee;Jang, Hyung-Su
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.10-18
    • /
    • 2018
  • The dynamic behaviour of the rock mass under the dynamic load is different from the static application of the maximum load of the same size. An experimental approach to investigating rock behavior under dynamic loads is more difficult than that under static conditions in control of dynamic loads, measurement and analysis of the results. Numerical methods are less constrained by performing the experiments numerically, rather than experimental ones, so they can be very powerful analytical tool at the design stage. However, even if the algorithms of the analysis method are appropriate, careful analysis is required because the calculation results may vary largely depending on input data and boundary conditions. In this paper, when investigating the behavior of rock structures under dynamic load numerically, the effects of boundary conditions, dynamic load and calculation time step, and dynamic load characteristics on the calculation results were reviewed to provide guidance on setting up boundary conditions and calculation time step related to dynamic analysis.

Experimental and Numerical Analysis of a Simple Core Loss Calculation for AC Filter Inductor in PWM DC-AC Inverters

  • Lee, Kyoung-Jun;Cha, Honnyong;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • This paper introduces a simple core loss calculation method for output filter inductor in pulse width modulation (PWM) DC-AC inverter. Amorphous C-core (AMCC-320) is used to analyze the core loss. In order to measure core loss of the output filter inductor and validate the proposed method, a single-phase half-bridge inverter and a calorimeter are used. By changing switching frequency and modulation index (MI) of the inverter, core loss of the AMCC-320 is measured with the lab-made calorimeter and the results are compared with calculated core loss. The proposed method can be easily extended to other core loss calculation of various converters.

Characteristic Analysis of Capacitor Run Single-Phase Induction Motor by Equivalent Circuit Method (등가회로법에 의한 커패시터 구동 단상 유도전동기의 특성해석)

  • Jwa, Chong-Keun;Kim, Ho-Min;Kim, Do-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.220-226
    • /
    • 2011
  • This paper proposes a straightforward method of analyzing the operation characteristics for the capacitor run single-phase induction motor from the traditional equivalent circuit based on the revolving field theory. The proposed method consists of five procedures as follows: mechanical loss segregation, iron loss segregation and calculation of the equivalent circuit parameters, recalculation of parameters of the main winding side, calculation of the auxiliary winding magnetizing reactance and effective turn ratio, and analyzing the operation characteristics for this motor. When the characteristics are analyzed, the segregated mechanical and iron losses are considered as a loss resistance across input terminals of the equivalent circuit for the analysis. The validity of the proposed method is verified from the comparison between the computed results and the experimental ones for the operation characteristics.

Experimental study and analysis of design parameters for analysis of fluidelastic instability for steam generator tubing

  • Xiong Guangming;Zhu Yong;Long Teng;Tan Wei
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.109-118
    • /
    • 2023
  • In this paper, the evaluation method of fluidelastic instability (FEI) of newly designed steam generator tubing in pressurized water reactor (PWR) nuclear power plants is discussed. To obtain the parameters for prediction of the critical velocity of FEI for steam generator tubes, experimental research is carried out, and the design parameters are determined. Using CFD numerical simulation, the tube array scale of the model experiment is determined, and the experimental device is designed. In this paper, 7 groups of experiments with void fractions of 0% (water), 10%, 20%, 50%, 75%, 85% and 95% were carried out. The critical damping ration, fundamental frequency and critical velocity of FEI of tubes in flowing water were measured. Through calculation, the total mass and instability constant of the immersed tube are obtained. The critical damping ration measured in the experiment mainly included two-phase damping and viscous damping, which changed with the change in void fraction from 1.56% to 4.34%. This value can be used in the steam generator design described in this paper and is conservative. By introducing the multiplier of frequency and square root of total mass per unit length, it is found that the difference between the experimental results and the calculated results is less than 1%, which proves the rationality and feasibility of the calculation method of frequency and total mass per unit length in engineering design. Through calculation, the instability constant is greater than 4 when the void fraction is less than 75%, less than 4 when the void fraction exceeds 75% and only 3.04 when the void fraction is 95%.

Calculation of the Parameter according to the Slip in Squirrel-Cage Induction Motor (Slip에 따른 농형유도전동기의 회로정수 산정)

  • Lee, Su-Jin;Lee, Jeong-Jong;Kim, Sung-Il;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.738_739
    • /
    • 2009
  • This paper describes the calculation of the equivalent circuit parameters according to the slip in squirrel-cage induction motor. Recently, the induction motor is demanded of the various operation condition. In order to acquire the accurate characteristic for the operation condition of the motor, equivalent circuit parameters have to be calculated accurately. So the equivalent circuit parameters are computed by using the finite element method, the reliable characteristic analysis is carried out by application of the parameter to the equivalent circuit analysis. From the analysis result using this combined equivalent circuit and finite element method is compared with the experimental results by a detailed equivalent circuit, the validity of the method is proved.

  • PDF

Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows (텐덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측)

  • Noh, Jun-Gu;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.469-475
    • /
    • 2003
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed differently according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical. The numerical results agree with the measured data in respect of their tendency. It turned out that 0% of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for 75% case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

  • PDF

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

Flux Linkage Calculation for 3-D Finite Element Analysis

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Kim, Hong-Kyu
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.13-18
    • /
    • 2002
  • Novel method to calculate flux linkage for 3-D finite element analysis is proposed. It does not require any integral path if the current direction in a coil is known. The flux linkage can be calculated very easily using simple volume based integration. The current direction is calculated based on the recently developed technique by the authors. The novel method for flux linkage calculation is verified by applying to a very complicated deflection yoke coil. The simulation result is compared to the experimental one. From the simulation, it is shown that the proposed method is very accurate and effective to calculate the flux linkage of a coil.