• Title/Summary/Keyword: Experimental Technique

Search Result 6,804, Processing Time 0.038 seconds

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.

A New Exploratory Research on Franchisor's Provision of Exclusive Territories (가맹본부의 배타적 영업지역보호에 대한 탐색적 연구)

  • Lim, Young-Kyun;Lee, Su-Dong;Kim, Ju-Young
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.37-63
    • /
    • 2012
  • In franchise business, exclusive sales territory (sometimes EST in table) protection is a very important issue from an economic, social and political point of view. It affects the growth and survival of both franchisor and franchisee and often raises issues of social and political conflicts. When franchisee is not familiar with related laws and regulations, franchisor has high chance to utilize it. Exclusive sales territory protection by the manufacturer and distributors (wholesalers or retailers) means sales area restriction by which only certain distributors have right to sell products or services. The distributor, who has been granted exclusive sales territories, can protect its own territory, whereas he may be prohibited from entering in other regions. Even though exclusive sales territory is a quite critical problem in franchise business, there is not much rigorous research about the reason, results, evaluation, and future direction based on empirical data. This paper tries to address this problem not only from logical and nomological validity, but from empirical validation. While we purse an empirical analysis, we take into account the difficulties of real data collection and statistical analysis techniques. We use a set of disclosure document data collected by Korea Fair Trade Commission, instead of conventional survey method which is usually criticized for its measurement error. Existing theories about exclusive sales territory can be summarized into two groups as shown in the table below. The first one is about the effectiveness of exclusive sales territory from both franchisor and franchisee point of view. In fact, output of exclusive sales territory can be positive for franchisors but negative for franchisees. Also, it can be positive in terms of sales but negative in terms of profit. Therefore, variables and viewpoints should be set properly. The other one is about the motive or reason why exclusive sales territory is protected. The reasons can be classified into four groups - industry characteristics, franchise systems characteristics, capability to maintain exclusive sales territory, and strategic decision. Within four groups of reasons, there are more specific variables and theories as below. Based on these theories, we develop nine hypotheses which are briefly shown in the last table below with the results. In order to validate the hypothesis, data is collected from government (FTC) homepage which is open source. The sample consists of 1,896 franchisors and it contains about three year operation data, from 2006 to 2008. Within the samples, 627 have exclusive sales territory protection policy and the one with exclusive sales territory policy is not evenly distributed over 19 representative industries. Additional data are also collected from another government agency homepage, like Statistics Korea. Also, we combine data from various secondary sources to create meaningful variables as shown in the table below. All variables are dichotomized by mean or median split if they are not inherently dichotomized by its definition, since each hypothesis is composed by multiple variables and there is no solid statistical technique to incorporate all these conditions to test the hypotheses. This paper uses a simple chi-square test because hypotheses and theories are built upon quite specific conditions such as industry type, economic condition, company history and various strategic purposes. It is almost impossible to find all those samples to satisfy them and it can't be manipulated in experimental settings. However, more advanced statistical techniques are very good on clean data without exogenous variables, but not good with real complex data. The chi-square test is applied in a way that samples are grouped into four with two criteria, whether they use exclusive sales territory protection or not, and whether they satisfy conditions of each hypothesis. So the proportion of sample franchisors which satisfy conditions and protect exclusive sales territory, does significantly exceed the proportion of samples that satisfy condition and do not protect. In fact, chi-square test is equivalent with the Poisson regression which allows more flexible application. As results, only three hypotheses are accepted. When attitude toward the risk is high so loyalty fee is determined according to sales performance, EST protection makes poor results as expected. And when franchisor protects EST in order to recruit franchisee easily, EST protection makes better results. Also, when EST protection is to improve the efficiency of franchise system as a whole, it shows better performances. High efficiency is achieved as EST prohibits the free riding of franchisee who exploits other's marketing efforts, and it encourages proper investments and distributes franchisee into multiple regions evenly. Other hypotheses are not supported in the results of significance testing. Exclusive sales territory should be protected from proper motives and administered for mutual benefits. Legal restrictions driven by the government agency like FTC could be misused and cause mis-understandings. So there need more careful monitoring on real practices and more rigorous studies by both academicians and practitioners.

  • PDF

THE EFFECTS OF THE PLATELET-DERIVED GROWTH FACTOR-BB ON THE PERIODONTAL TISSUE REGENERATION OF THE FURCATION INVOLVEMENT OF DOGS (혈소판유래성장인자-BB가 성견 치근이개부병변의 조직재생에 미치는 효과)

  • Cho, Moo-Hyun;Park, Kwang-Beom;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.535-563
    • /
    • 1993
  • New techniques for regenerating the destructed periodontal tissue have been studied for many years. Current acceptable methods of promoting periodontal regeneration alre basis of removal of diseased soft tissue, root treatment, guided tissue regeneration, graft materials, biological mediators. Platelet-derived growth factor (PDGF) is one of polypeptide growth factor. PDGF have been reported as a biological mediator which regulate activities of wound healing progress including cell proliferation, migration, and metabolism. The purposes of this study is to evaluate the possibility of using the PDGF as a regeneration promoting agent for furcation involvement defect. Eight adult mongrel dogs were used in this experiment. The dogs were anesthetized with Pentobarbital Sodium (25-30 mg/kg of body weight, Tokyo chemical Co., Japan) and conventional periodontal prophylaxis were performed with ultrasonic scaler. With intrasulcular and crestal incision, mucoperiosteal flap was elevated. Following decortication with 1/2 high speed round bur, degree III furcation defect was made on mandibular second(P2) and fourth(P4) premolar. For the basic treatment of root surface, fully saturated citric acid was applied on the exposed root surface for 3 minutes. On the right P4 20ug of human recombinant PDGF-BB dissolved in acetic acid was applied with polypropylene autopipette. On the left P2 and right P2 PDGF-BB was applied after insertion of ${\beta}-Tricalcium$ phosphate(TCP) and collagen (Collatape) respectively. Left mandibular P4 was used as control. Systemic antibiotics (Penicillin-G benzathine and penicillin-G procaine, 1 ml per 10-25 1bs body weight) were administrated intramuscular for 2 weeks after surgery. Irrigation with 0.1% Chlorhexidine Gluconate around operated sites was performed during the whole experimental period except one day immediate after surgery. Soft diets were fed through the whole experiment period. After 2, 4, 8, 12 weeks, the animals were sacrificed by perfusion technique. Tissue block was excised including the tooth and prepared for light microscope with H-E staining. At 2 weeks after surgery, therer were rapid osteogenesis phenomenon on the defected area of the PDGF only treated group and early trabeculation pattern was made with new osteoid tissue produced by activated osteoblast. Bone formation was almost completed to the fornix of furcation by 8 weeks after surgery. New cementum fromation was observed from 2 weeks after surgery, and the thickness was increased until 8 weeks with typical Sharpey’s fibers reembedded into new bone and cementum. In both PDGF-BB with TCP group and PDGF-BB with Collagen group, regeneration process including new bone and new cementum formation and the group especially in the early weeks. It might be thought that the migration of actively proliferating cells was prohibited by the graft materials. In conclusion, platelet-derived growth factor can promote rapid osteogenesis during early stage of periodontal tissue regeneration.

  • PDF

Image Watermarking for Copyright Protection of Images on Shopping Mall (쇼핑몰 이미지 저작권보호를 위한 영상 워터마킹)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.147-157
    • /
    • 2013
  • With the advent of the digital environment that can be accessed anytime, anywhere with the introduction of high-speed network, the free distribution and use of digital content were made possible. Ironically this environment is raising a variety of copyright infringement, and product images used in the online shopping mall are pirated frequently. There are many controversial issues whether shopping mall images are creative works or not. According to Supreme Court's decision in 2001, to ad pictures taken with ham products is simply a clone of the appearance of objects to deliver nothing but the decision was not only creative expression. But for the photographer's losses recognized in the advertising photo shoot takes the typical cost was estimated damages. According to Seoul District Court precedents in 2003, if there are the photographer's personality and creativity in the selection of the subject, the composition of the set, the direction and amount of light control, set the angle of the camera, shutter speed, shutter chance, other shooting methods for capturing, developing and printing process, the works should be protected by copyright law by the Court's sentence. In order to receive copyright protection of the shopping mall images by the law, it is simply not to convey the status of the product, the photographer's personality and creativity can be recognized that it requires effort. Accordingly, the cost of making the mall image increases, and the necessity for copyright protection becomes higher. The product images of the online shopping mall have a very unique configuration unlike the general pictures such as portraits and landscape photos and, therefore, the general image watermarking technique can not satisfy the requirements of the image watermarking. Because background of product images commonly used in shopping malls is white or black, or gray scale (gradient) color, it is difficult to utilize the space to embed a watermark and the area is very sensitive even a slight change. In this paper, the characteristics of images used in shopping malls are analyzed and a watermarking technology which is suitable to the shopping mall images is proposed. The proposed image watermarking technology divide a product image into smaller blocks, and the corresponding blocks are transformed by DCT (Discrete Cosine Transform), and then the watermark information was inserted into images using quantization of DCT coefficients. Because uniform treatment of the DCT coefficients for quantization cause visual blocking artifacts, the proposed algorithm used weighted mask which quantizes finely the coefficients located block boundaries and coarsely the coefficients located center area of the block. This mask improves subjective visual quality as well as the objective quality of the images. In addition, in order to improve the safety of the algorithm, the blocks which is embedded the watermark are randomly selected and the turbo code is used to reduce the BER when extracting the watermark. The PSNR(Peak Signal to Noise Ratio) of the shopping mall image watermarked by the proposed algorithm is 40.7~48.5[dB] and BER(Bit Error Rate) after JPEG with QF = 70 is 0. This means the watermarked image is high quality and the algorithm is robust to JPEG compression that is used generally at the online shopping malls. Also, for 40% change in size and 40 degrees of rotation, the BER is 0. In general, the shopping malls are used compressed images with QF which is higher than 90. Because the pirated image is used to replicate from original image, the proposed algorithm can identify the copyright infringement in the most cases. As shown the experimental results, the proposed algorithm is suitable to the shopping mall images with simple background. However, the future study should be carried out to enhance the robustness of the proposed algorithm because the robustness loss is occurred after mask process.

Establishment and Application of Molecular Genetic Techniques for Preimplantation Genetic Diagnosis of Osteogenesis Imperfecta (골형성부전증의 착상전 유전진단을 위한 분자유전학적 방법의 조건 확립과 적용)

  • Kim, Min-Jee;Lee, Hyoung-Song;Choi, Hye-Won;Lim, Chun-Kyu;Cho, Jae-Won;Kim, Jin-Young;Song, In-Ok;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.2
    • /
    • pp.99-110
    • /
    • 2008
  • Objectives: Preimplantation genetic diagnosis (PGD) has become an assisted reproductive technique for couples carrying genetic conditions that may affect their offspring. Osteogenesis imperfecta (OI) is an autosomal dominant disorder of connective tissue characterized by bone fragility and low bone mass. At least 95% of cases are caused by dominant mutations in the COL1A1 or COL1A2. In this study, we report on our experience clinical outcomes with 5 PGD cycles for OI in two couples. Methods: Before clinical PGD, we assessed the amplification rate and allele drop-out (ADO) rate of alkaline lysis and nested PCR protocol using heterozygous patient's single lymphocytes in the pre-clinical diagnostic tests for OI. We performed 5 cycles of PGD for OI by nested PCR for the causative mutation loci, COL1A1 c.2452G>A and c.3226G>A, in case 1 and case 2, respectively. The PCR products were analyzed by agarose gel electrophoresis, restriction fragment length polymorphism (RFLP) analysis with HaeIII restriction enzyme in the case 1 and direct DNA sequencing. Results: We confirmed the causative mutation loci, COL1A1 c.2452G>A in case 1 and c.3226G>A in case 2. In the pre-clinical tests, the amplification rate was 94.2% and ADO rate was 22.5% in case 1, while 98.1% and 1.9% in case 2, respectively. In case 1, a total of 34 embryos were analyzed and 31 embryos (91.2%) were successfully diagnosed in 3 PGD cycles. Eight out of 19 embryos diagnosed as unaffected embryos were transferred in all 3 cycles, and in the third cycle, pregnancy was achieved and a healthy baby was delivered without any complications in July, 2005. In case 2, all 19 embryos (100.0%) were successfully diagnosed and 4 out of 11 unaffected embryos were transferred in 2 cycles. Pregnancy was achieved in the second cycle and the healthy baby was delivered in March, 2008. The causative locus was confirmed as a normal by amniocentesis and postnatal diagnosis. Conclusions: To our knowledge, these two cases are the first successful PGD for OI in Korea. Our experience provides a further demonstration that PGD is a reliable and effective clinical techniques and a useful option for many couples with a high risk of transmitting a genetic disease.

The micro-tensile bond strength of two-step self-etch adhesive to ground enamel with and without prior acid-etching (산부식 전처리에 따른 2단계 자가부식 접착제의 연마 법랑질에 대한 미세인장결합강도)

  • Kim, You-Lee;Kim, Jee-Hwan;Shim, June-Sung;Kim, Kwang-Mahn;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.148-156
    • /
    • 2008
  • Statement of problems: Self-etch adhesives exhibit some clinical benefits such as ease of manipulation and reduced technique-sensitivity. Nevertheless, some concern remains regarding the bonding effectiveness of self-etch adhesives to enamel, in particular when so-called 'mild' self-etch adhesives are employed. This study compared the microtensile bond strengths to ground enamel of the two-step self-etch adhesive Clearfil SE Bond (Kuraray) to the three-step etch-and- rinse adhesive Scotchbond Multi-Purpose (3M ESPE) and the one-step self-etch adhesive iBond (Heraeus Kulzer). Purpose: The purpose of this study was to determine the effect of a preceding phosphoric acid conditioning step on the bonding effectiveness of a two-step self-etch adhesive to ground enamel. Material and methods: The two-step self-etch adhesive Clearfil SE Bond non-etch group, Clearfil SE Bond etch group with prior 35% phosphoric acid etching, and the one-step self-etch adhesive iBond group were used as experimental groups. The three-step etch-and-rinse adhesive Scotchbond Multi-Purpose was used as a control group. The facial surfaces of bovine incisors were divided in four equal parts cruciformly, and randomly distributed into each group. The facial surface of each incisor was ground with 800-grit silicon carbide paper. Each adhesive group was applied according to the manufacturer's instructions to ground enamel, after which the surface was built up using Light-Core (Bisco). After storage in distilled water at $37^{\circ}C$ for 1 week, the restored teeth were sectioned into enamel beams approximately 0.8*0.8mm in cross section using a low speed precision diamond saw (TOPMET Metsaw-LS). After storage in distilled water at $37^{\circ}C$ for 1 month, 3 months, microtensile bond strength evaluations were performed using microspecimens. The microtensile bond strength (MPa) was derived by dividing the imposed force (N) at time of fracture by the bond area ($mm^2$). The mode of failure at the interface was determined with a microscope (Microscope-B nocular, Nikon). The data of microtensile bond strength were statistically analyzed using a one-way ANOVA, followed by Least Significant Difference Post Hoc Test at a significance level of 5%. Results: The mean microtensile bond strength after 1 month of storage showed no statistically significant difference between all adhesive groups (P>0.05). After 3 months of storage, adhesion to ground enamel of iBond was not significantly different from Clearfil SE Bond etch (P>>0.05), while Clearfil SE Bond non-etch and Scotchbond Multi-Purpose demonstrated significantly lower bond strengths (P<0.05), with no significant differences between the two adhesives. Conclusion: In this study the microtensile bond strength to ground enamel of two-step self-etch adhesive Clearfil SE Bond was not significantly different from three-step etch-and-rinse adhesive Scotchbond Multi-Purpose, and prior etching with 35% phosphoric acid significantly increased the bonding effectiveness of Clearfil SE Bond to enamel at 3 months.

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.

Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies (적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로)

  • Heo, Junyoung;Yang, Jin Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • According to the 2013 construction market outlook report, the liquidation of construction companies is expected to continue due to the ongoing residential construction recession. Bankruptcies of construction companies have a greater social impact compared to other industries. However, due to the different nature of the capital structure and debt-to-equity ratio, it is more difficult to forecast construction companies' bankruptcies than that of companies in other industries. The construction industry operates on greater leverage, with high debt-to-equity ratios, and project cash flow focused on the second half. The economic cycle greatly influences construction companies. Therefore, downturns tend to rapidly increase the bankruptcy rates of construction companies. High leverage, coupled with increased bankruptcy rates, could lead to greater burdens on banks providing loans to construction companies. Nevertheless, the bankruptcy prediction model concentrated mainly on financial institutions, with rare construction-specific studies. The bankruptcy prediction model based on corporate finance data has been studied for some time in various ways. However, the model is intended for all companies in general, and it may not be appropriate for forecasting bankruptcies of construction companies, who typically have high liquidity risks. The construction industry is capital-intensive, operates on long timelines with large-scale investment projects, and has comparatively longer payback periods than in other industries. With its unique capital structure, it can be difficult to apply a model used to judge the financial risk of companies in general to those in the construction industry. Diverse studies of bankruptcy forecasting models based on a company's financial statements have been conducted for many years. The subjects of the model, however, were general firms, and the models may not be proper for accurately forecasting companies with disproportionately large liquidity risks, such as construction companies. The construction industry is capital-intensive, requiring significant investments in long-term projects, therefore to realize returns from the investment. The unique capital structure means that the same criteria used for other industries cannot be applied to effectively evaluate financial risk for construction firms. Altman Z-score was first published in 1968, and is commonly used as a bankruptcy forecasting model. It forecasts the likelihood of a company going bankrupt by using a simple formula, classifying the results into three categories, and evaluating the corporate status as dangerous, moderate, or safe. When a company falls into the "dangerous" category, it has a high likelihood of bankruptcy within two years, while those in the "safe" category have a low likelihood of bankruptcy. For companies in the "moderate" category, it is difficult to forecast the risk. Many of the construction firm cases in this study fell in the "moderate" category, which made it difficult to forecast their risk. Along with the development of machine learning using computers, recent studies of corporate bankruptcy forecasting have used this technology. Pattern recognition, a representative application area in machine learning, is applied to forecasting corporate bankruptcy, with patterns analyzed based on a company's financial information, and then judged as to whether the pattern belongs to the bankruptcy risk group or the safe group. The representative machine learning models previously used in bankruptcy forecasting are Artificial Neural Networks, Adaptive Boosting (AdaBoost) and, the Support Vector Machine (SVM). There are also many hybrid studies combining these models. Existing studies using the traditional Z-Score technique or bankruptcy prediction using machine learning focus on companies in non-specific industries. Therefore, the industry-specific characteristics of companies are not considered. In this paper, we confirm that adaptive boosting (AdaBoost) is the most appropriate forecasting model for construction companies by based on company size. We classified construction companies into three groups - large, medium, and small based on the company's capital. We analyzed the predictive ability of AdaBoost for each group of companies. The experimental results showed that AdaBoost has more predictive ability than the other models, especially for the group of large companies with capital of more than 50 billion won.

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

The Application of 3D Bolus with Neck in the Treatment of Hypopharynx Cancer in VMAT (Hypopharynx Cancer의 VMAT 치료 시 Neck 3D Bolus 적용에 대한 유용성 평가)

  • An, Ye Chan;Kim, Jin Man;Kim, Chan Yang;Kim, Jong Sik;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.41-52
    • /
    • 2020
  • Purpose: To find out the dosimetric usefulness, setup reproducibility and efficiency of applying 3D Bolus by comparing two treatment plans in which Commercial Bolus and 3D Bolus produced by 3D Printing Technology were applied to the neck during VMAT treatment of Hypopahrynx Cancer to evaluate the clinical applicability. Materials and Methods: Based on the CT image of the RANDO phantom to which CB was applied, 3D Bolus were fabricated in the same form. 3D Bolus was printed with a polyurethane acrylate resin with a density of 1.2g/㎤ through the SLA technique using OMG SLA 660 Printer and MaterializeMagics software. Based on two CT images using CB and 3D Bolus, a treatment plan was established assuming VMAT treatment of Hypopharynx Cancer. CBCT images were obtained for each of the two established treatment plans 18 times, and the treatment efficiency was evaluated by measuring the setup time each time. Based on the obtained CBCT image, the adaptive plan was performed through Pinnacle, a computerized treatment planning system, to evaluate target, normal organ dose evaluation, and changes in bolus volume. Results: The setup time for each treatment plan was reduced by an average of 28 sec in the 3D Bolus treatment plan compared to the CB treatment plan. The Bolus Volume change during the pretreatment period was 86.1±2.70㎤ in 83.9㎤ of CB Initial Plan and 99.8±0.46㎤ in 92.2㎤ of 3D Bolus Initial Plan. The change in CTV Min Value was 167.4±19.38cGy in CB Initial Plan 191.6cGy and 149.5±18.27cGy in 3D Bolus Initial Plan 167.3cGy. The change in CTV Mean Value was 228.3±0.38cGy in CB Initial Plan 227.1cGy and 227.7±0.30cGy in 3D Bolus Initial Plan 225.9cGy. The change in PTV Min Value was 74.9±19.47cGy in CB Initial Plan 128.5cGy and 83.2±12.92cGy in 3D Bolus Initial Plan 139.9cGy. The change in PTV Mean Value was 226.2±0.83cGy in CB Initial Plan 225.4cGy and 225.8±0.33cGy in 3D Bolus Initial Plan 224.1cGy. The maximum value for the normal organ spinal cord was the same as 135.6cGy on average each time. Conclusion: From the experimental results of this paper, it was found that the application of 3D Bolus to the irregular body surface is more dosimetrically useful than the application of Commercial Bolus, and the setup reproducibility and efficiency are excellent. If further case studies along with research on the diversity of 3D printing materials are conducted in the future, the application of 3D Bolus in the field of radiation therapy is expected to proceed more actively.