• 제목/요약/키워드: Experimental Aircraft

검색결과 375건 처리시간 0.027초

무인항공기시스템의 실험분류 특별감항증명 제도에 관한 고찰 (A Study on Experimental Special Airworthiness Certification for Unmanned Aircraft Systems)

  • 최미진
    • 한국항공운항학회지
    • /
    • 제28권4호
    • /
    • pp.55-62
    • /
    • 2020
  • Special airworthiness certificates can be issued if the aircraft does not meet the airworthiness standards, but it is deemed that it can be operated safely by partially limiting the scope of operation and flight performance. Currently, Korea is subject to experimental special certification for UAS(Unmanned Aircraft Systems) exceeding 150 kg of its own weight, but detailed guidelines need to be prepared on how to prove that they can be operated safely in a limited range. Recently, Korea Airworthiness Standard(KAS) Part 21 has been revised to reflect this, but it needs to be supplemented. In this study, through an understanding and analysis of the FAA's procedure of expeirmental special airworthiness certifications for UAS, we would like to suggest what we should consider when developing relevant guidelines in our country.

항공기용 ABS 제동시스템의 노면 조건별 제동특성에 관한 시험적 연구 (Experimental Research on Braking Characteristics of Aircraft ABS Brake System with Ground Conditions)

  • 이미선
    • 한국항공운항학회지
    • /
    • 제25권2호
    • /
    • pp.18-24
    • /
    • 2017
  • Results of the experimental research are described in this thesis, which are about braking characteristics of aircraft ABS brake system with different ground conditions. Dynamo-tests were conducted with the state of the application aircraft condition and with two different ground conditions. The Braking characteristics on each ground condition were drawn from the results of occurrence of skid, braking distance and deceleration. The braking performance of the application aircraft could be anticipated and the efficient range of braking operation could be set with those results.

항공기의 롤운동 동안정미계수 측정에 관한 연구 (A Study on the Measurement of Dynamic Stability Derivatives in the Rolling Motion of Aircraft)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제21권4호
    • /
    • pp.41-46
    • /
    • 2013
  • 본 논문은 항공기의 롤운동에 대한 동안정미계수 측정을 위한 실험적 기법에 관하여 기술하였다. 항공기 동안정미계수의 실험적인 추출 방법은 항공기 모델을 이용하여 풍동에서 진동실험을 수행하는 것이다. 항공기 모델의 진동은 강제진동기법이 적용되었다. 강제진동 기법은 항공기 모델의 내부에 밸런스형의 측정장치를 설치하고 모델을 풍동 시험부 내에 고정한 후에 강제로 진동시키면서 밸런스로부터 측정값을 획득하는 방법이다. 롤링 운동에 대한 동안정미계수는 풍속이 있는 상태에서 강제진동에 의한 항공기 모델의 모멘트와 진동 주파수 및 진폭을 측정한 후에 자료처리를 통하여 계산되었다. 풍동실험의 결과는 타 기관에서 측정된 표준동역학모델의 롤 동안정미계수와 유사한 결과가 얻어짐을 확인하였다.

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

항공기 소음 저감시설의 음향 성능 관련 실험 및 예측에 관한 연구 (Experimental and computational study of acoustic performance of the aircraft hush house)

  • 정환익;김관주;박진규;김상헌
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.754-757
    • /
    • 2005
  • Aircraft noise is the serious problem for inhabitants near an air force base. Noise by ground test of aircraft, however, can be minimized through test room construction. In this study, environmental effects of the noise by aircraft ground test were investigated by experiments under the standard act and by performance, prediction of the Hush house, constructed for the noise reduction.

  • PDF

Aircraft Detection on Panchromatic Imagery Based on Densely Connected Convolutional Network

  • Wiratama, Wahyu;Sim, Donggyu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.185-187
    • /
    • 2018
  • This paper presents an aircraft detection on panchromatic image using densely connected convolutional network. This algorithm connects all preceding feature-maps to all subsequent layers. It is encouraged to reuse feature-maps and enhance feature-maps representation. This algorithm is driven to learn aircraft feature to detect aircraft objects on panchromatic imagery. Based on the experimental result, it can yield accuracy of 92%.

  • PDF

항공기 동적 부분품에 대한 신뢰성 평가 (A Study on Reliability Assessment of Aircraft Structural Parts)

  • 김은정;원준호;최주호;김태곤
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.38-43
    • /
    • 2010
  • A continuing challenge in the aviation industry is how to safely keep aircraft in service longer with limited maintenance budgets. Therefore, all the advanced countries in aircraft technologies put great efforts in prediction of failure rate in parts and system, but in the domestic aircraft industry is lack of theoretical and experimental research. Prediction of failure rate provides a rational basis for design decisions such as the choice of part quality levels and derating factors to be applied. For these reasons, analytic prediction of failure rate is essential process in developing aircraft structure. In this paper, a procedure for prediction of failure rate for aircraft structural parts is presented. Cargo door kinematic parts are taken to illustrate the process, in which the failure rate for Hook part is computed by using Monte Carlo Simulation along with Response Surface Model, and system failure rate is obtained afterwards.

항공기 배기후류가 FOD 발생에 미치는 영향 분석 (Analysis of the Influence of FOD by Aircraft Exhaust Wake)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제30권1호
    • /
    • pp.12-19
    • /
    • 2022
  • The exhaust wake of an aircraft engine is discharged in a high temperature and high speed, which can damage objects such as an aircraft in the rear. The exhaust wake can lift small foreign substances lying on the ground or falling off, and the floating foreign substances can enter the intake duct of the aircraft moving from the rear and cause engine FOD (Foreign Object Damage). This study experimentally analyzed how the engine exhaust wake generated from military jet fighters affects the movement of foreign substances and evaluated the effects of foreign substances on the damaged area by measuring wake velocity. The simulation and field experimental results confirmed that the effect of exhaust wake increases as the rear position closer, and that foreign substances lifted by the wake can act as FOD to the adjacent rear aircraft.

항공기 탑재체의 분리 후 공력 특성 변화 효과 (Changing Effect in Aerodynamic Characteristics of a Captive Body Separated from Aircraft)

  • 조환기;이상현;강치행
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.397-404
    • /
    • 2011
  • The aerodynamic characteristics of a separated captive body in flow field around aircraft are studied to observe aerodynamic stability for safe separation from aircraft. Since the captive body separated from aircraft is initially exposed to unsteady flow pattern, the change of aerodynamic forces and moments should be measured to analyze how the flow pattern affects on the captive body at the vicinity of aircraft. Aerodynamic forces and moments of the separated captive body are measured at selected positions along predictable dropping trajectories. The measuring trajectories, generated by the free drop test of the dropping model in the wind tunnel, are consisted of 9 possible lines by free dropped trajectories. Experimental results show that the aerodynamic forces and moments are significantly varied with the distance between the captive body and aircraft. In conclusion, the change of aerodynamic characteristics within flow field around aircraft should be considered to simulate trajectories of the separated captive body from aircraft.

항공기용 서스펜션 장비의 천이구조하중해석에 대한 연구 (Study on Transient Structural Load Analysis of Aircraft Suspension Equipment)

  • 차진현;정상준;최관호
    • 항공우주시스템공학회지
    • /
    • 제9권3호
    • /
    • pp.23-30
    • /
    • 2015
  • In this study, a transient structural load analysis system was constructed to calculate the applied load on the suspension equipment corresponding to the aircraft flight conditions based on military specifications. Aircraft flight data (altitude, velocity, acceleration, angle of attack and etc. at aircraft center of gravity) were used as input parameters and the calculated load of the suspension equipment at wings on the left and right side was printed out for the structural load analysis. As a calculation procedure, first of all, load analysis was carried out at the center of gravity of the external store, Secondly, a trial reaction force analysis was conducted on hook and swaybrace of suspension equipment. All procedure of calculations was programed to analyze the structural load automatically. To verify the numerical results, structural load analysis using the experimental flight data was performed.