• Title/Summary/Keyword: Expected Mean Concentration

Search Result 90, Processing Time 0.025 seconds

Spray Characteristics of Injector Used for HC-DeNOx Catalyst System (HC-DeNOx 촉매용 인젝터의 분무 특성 연구)

  • Lee, Dong-Hoon;Jung, Hae-Young;Lee, Ki-Hyung;Lee, Jin-Ha;Yeo, Kwon-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.167-172
    • /
    • 2007
  • A new method that optimizes a control of hydrocarbon (HC) addition to diesel exhaust gas for HC type DeNOx catalyst system has been developed. These catalysts are called the HC-DeHOx catalyst in this paper. The system using HC-DeNOx catalyst requires a resonable quantity of hydrocarbons addition in the inlet gas of the catalyst, because the HC concentration in a diesel engine is so low that the HC is not sufficient for NOx conversion. It is expected that this study offers a robust data developing HC injection system.

Correlations Between Concentrations of Negative Ions and Forest Type, and Site Factors at National Forests in Yangyang-gun (양양군 국유림 지역의 음이온 농도와 임상, 숲 관련인자와의 상관)

  • Um, Tae-Won;Kim, Gab-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.5
    • /
    • pp.539-546
    • /
    • 2010
  • To investigate the variation of anion concentrations in relation to forest type, forest-related factors, forest survey and anion concentrations measurement were carried out on the 52 quadrats located at the national forest areas in Yangyang-gun, Kangwon-do. The relationship between anion concentrations and forest-related factors were correlated. Total mean of anion concentration was 2,405 ea/$cm^3$, which was slightly higher than general figures 2,000ea/$cm^3$. Highly significant positive correlations were observed between anion concentrations and soil moisture contents, and also between anion concentrations and altitude. Significant positive correlations were observed between anion concentrations and topography. Anion concentrations were significantly different among soil moisture levels. Mean anion concentration were highest at 4,524.4ea/$cm^3$ in on wet sites, and followed slightly wet sites and moderate sites. Mean anion concentrations was highest on valley sites at 3,372.4ea/$cm^3$, followed by slope and ridge areas. Mean anion concentrations measured before noon was highest at 3,133.4ea/$cm^3$, and measurements during 12:00~15:00 and after 15:00, showed relatively low anion concentrations. Mean anion concentrations was highest at mixed deciduous forests at 3,503.9ea/$cm^3$, followed by oak forests, pine forests, and pine-oak forests. Results of this study are expected to be used in planning therapeutic forests.

Proteomic analysis of serum proteins responsive to styrene exposure (Styrene 노출에 반응을 보이는 혈청 단백질에 대한 프로테오믹스 분석)

  • Kim, Ki-Woong;Heo, Kyung-Hwa;Won, Yong Lim;Jeong, Jin Wook;Kim, Tae Gyun;Park, Injeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.235-244
    • /
    • 2007
  • By comparing the proteins from the workers exposed to styrene with the ones from controls, it may be possible to identify proteins that play a role in the occurrence and progress of occupational disease and thus to study the molecular mechanisms of occupational disease. In order to find the biomarkers for assessing the styrene effects early, before clinical symptoms develop and to understand the mechanisms of adverse health effects, we surveyed 134 employees, among whom 52 workers(30 male and 22 female) were chronically exposed to styrene in 10 glass-reinforced plastic boat manufacturing factories in Korea and 82 controls had never been occupationally exposed to hazardous chemicals including styrene. The age and drinking habits and serum biochemistry such as total protein, BUN and serum creatinine in both groups were significantly different. Exposed workers were divided into three groups according to exposure levels of styrene(G1, below 1/2 TLV; G2, 1/2 TLV to TLV; G3, above TLV). The mean concentration of airborne styrene in G1 group was $10.93{\pm}11.33ppm$, and those of urinary mandelic acid(MA) and phenylglyoxylic acid(PGA) were $0.17{\pm}0.21$ and $0.13{\pm}0.11g/g$ creatinine, respectively. The mean concentration of airborne styrene in G2 and G3 groups were $47.54{\pm}22.43$ and $65.33{\pm}33.47ppm$, respectively, and levels of urinary metabolites such as MA and PGA increased considerably as expected with the increase in exposure level of styrene. The airborne styrene concentration were significantly correlated to the urinary concentration of MA(r=0.784, p=0.000) and PGA(r=0.626, p<0.001). In the 2D electrophoresis, the concentration of five proteins including complement C3 precursor, alpha-1-antitrypsin(AAT), vitamin D binding protein precursor(DBP), alpha-1-B-glycoprotein(A1BG) and inter alpha trypsin inhibitor(ITI) heavy chain-related protein were significantly altered in workers exposed to styrene compared with controls. While expression of complement C3 precursor and AAT increased by exposure to styrene, expression of DBP, A1BG and ITI heavy chain-related protein decreased. These results suggest that the exposure of styrene might affects levels of plasma proteinase, carriers of endogenous substances and immune system. In particular, increasing of AAT with the increase in exposure level of styrene can explain the tissue damage and inflammation by the imbalance of proteinase/antiproteinase and decrease of DBP, A1BG and ITI heavy chain-related protein in workers exposed to styrene is associated with dysfunction and/or declination in immune system and signal transduction

Characteristics of CO, CO2, and NO2 Concentrations at Subway Stations in Busan for 3 Years (2015~2017) (부산지역 지하역사의 최근 3년간(2015~2017년) CO, CO2, NO2 농도의 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.595-606
    • /
    • 2019
  • This research investigated the characteristics of CO, $CO_2$, and $NO_2$ concentrations at main subway stations in Busan. The annual mean CO concentrations at the Suyeong and Nampo stations were 0.75 ppm and 0.48 ppm, respectively. Annual $CO_2$ concentration at the Seomyeon 1- platform was 649 ppm. The $NO_2$ concentrations at the Seomyeon 2- waiting room and the Yeonsan station were 0.048 ppm and 0.037 ppm, respectively. CO concentration was highest at two times of the day, and was proportional to the number of passengers commuting to and from work. The CO and $CO_2$ concentrations were highest in winter, but $NO_2$ concentration was highest in spring. CO and $CO_2$ concentrations were highest on Saturday and lowest on Sunday. The correlation of CO and $NO_2$ concentrations measured at the subway stations with those at the ambient air quality station were highest at the Seomyeon 1 and 2- waiting room and Jeonpodong. The correlation was lowest at the Yeonsan and Yeonsandong station. The number of days when $CO_2$ concentration exceeded 700 ppm over the last three years at the Seomyeon 1- platform was 174. The findings of this research are expected to deepen understanding of the fine particle characteristics at subway stations in Busan and be useful for developing a strategy for controlling urban indoor air quality.

Effect Analysis of a Artificial Intelligence Attention Redirection Compensation Strategy System on the Data Labeling Work Attention Concentration of Individuals with Developmental Disabilities (인공지능 주의환기 보상전략 시스템이 발달장애인의 데이터 라벨링 작업 주의집중력에 미치는 효과 분석)

  • Yong-Man Ha;Jong-Wook Jang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.119-125
    • /
    • 2024
  • This paper investigates the effect of an artificial intelligence attention redirection compensation strategy system on the data labeling work attention concentration by individuals with developmental disabilities. Task accuracy and task performance for each session were used as measures of attention concentration. As a result of the study, after the intervention was applied, a significant improvement in attention concentration was observed in all study subjects compared to self-serving task. These results mean that artificial intelligence technology can have a positive effect on improving the attention span of people with developmental disabilities during data labeling tasks. This study shows that the application of artificial intelligence technology can improve the quality of learning data by improving the accuracy of data labeling tasks for people with developmental disabilities, and is expected to provide important implications for vocational training programs related to data labeling for people with developmental disabilities.

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios (RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망)

  • Seo, Ga-Yeong;Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.

Global Carbon Budget Changes under RCP Scenarios in HadGEM2-CC (HadGEM-CC 모델의 RCP 시나리오에 따른 전지구 탄소수지 변화 전망)

  • Heo, Tae-Kyung;Boo, Kyung-On;Shim, Sungbo;Hong, Jinkyu;Hong, Je-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.85-97
    • /
    • 2015
  • This study is to investigate future changes in carbon cycle using the HadGEM2-Carbon Cycle simulations driven by $CO_2$ emissions. For experiment, global carbon budget is integrated from the two (8.5/2.6) representative concentration pathways (RCPs) for the period of 1860~2100 by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (Had-GEM2-CC). From 1985 to 2005, total cumulative $CO_2$ amount of anthropogenic emission prescribed as 156 GtC. The amount matches to the observed estimates (CDIAC) over the same period (136 GtC). As $CO_2$ emissions into the atmosphere increase, the similar increasing tendency is found in the simulated atmospheric $CO_2$ concentration and temperature. Atmospheric $CO_2$ concentration in the simulation is projected to be 430 ppm for RCP 2.6 at the end of the twenty-first century and as high as 931 ppm for RCP 8.5. Simulated global mean temperature is expected to rise by $1.6^{\circ}C$ and $3.5^{\circ}C$ for RCP 2.6 and 8.5, respectively. Land and ocean carbon uptakes also increase in proportion to the $CO_2$ emissions of RCPs. The fractions of the amount of $CO_2$ stored in atmosphere, land, and ocean are different in RCP 8.5 and 2.6. Further study is needed for reducing the simulation uncertainty based on multiple model simulations.

Atmospheric Acidic Deposition: State of Acid Rain in Korea and the World (대기산성강하물: 한국과 세계의 산성비 실태)

  • Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.169-180
    • /
    • 2005
  • Nitrogen dioxide concentration was being grown ca. 8% per year although sulphur dioxide concentration was being reduced ca. 10% per year in Seoul from 1996 to 2003. The rainwater was heavily acidic with pH 4.19 to 4.68 in Seoul during 1980 to 1991. Acidity score on the basis of the total anion concentration of rainwater follows the higher in sequence with Seoul(Kwanaksan)(341.5 ${\mu}equiv{\cdot}L^{-1}$), Gwangneung(199.2 ${\mu}equiv{\cdot}L^{-1}$) and whole Korea mean(10.3 ${\mu}equiv{\cdot}L^{-1}$). Rainwaters from 38 sampling sites of 16 countries in the world, on the basis of the acidity score, are classified and designated as five acid rain grades(ARG): the least score is founded in Tana Rata(16.2 ${\mu}equiv{\cdot}L^{-1}$), Malaysia where has the best rain but the greatest founded in Chongquing(541.1 ${\mu}equiv{\cdot}L^{-1}$), China where has the worst rain in the world. Even though acidic deposition decrease with time in the world generally, it is expected to increase in Asia, Africa and Mid-South America.

Spatial Characterization of Water Pollution in the Urban Stream Watershed (Gap Stream), Korea (도시하천(갑천) 유역에서 수질오염의 공간적 특성)

  • Lee, Heung-Soo;Hur, Jin;Jeong, Seon-A;Hwang, Soon-Jin;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.943-951
    • /
    • 2006
  • Spatial distribution of water pollution in the Gap Stream was investigated from October to November, 2005. Sampling was conducted three times including effluents discharged from a wastewater treatment plant (WWTP) and a dam reservoir during the low-flow period. As a typical urban stream, total nitrogen and inorganic nitrogen concentrations increased toward downstream. Ammonia concentration was the highest in the treated water of the wastewater treatment plant and the lowest nitrate concentration was found in the effluent of the dam reservoir. A part of soluble reactive phosphorous (SRP) in total phosphorous was 22~54% in the upstream reach of WWTP in the Gap Stream whereas 68~73% in the downstream reach. Mean chlorophyll-a concentration ranged from 1.6 to $11.0{\mu}g/L$ and it tends to increase toward downstream except for WWTP effluent. As expected, untreated wastewater and WWTP effluent were suggested as the major sources of water pollution in the Gap Stream. In this study, the water pollution of the Gap Stream is a significant undergoing typical eutrophication, caused by excessive phosphorus and nitrogen nutrients from WWTP located in the watershed. As a result, the critical factor for the water pollution was evaluated to dissolved inorganic nitrogen and phosphorus nutrients. Particularly, SRP is a most important for the eutrophication. It suggest that may occur in the most urban streams of Korean peninsula. Therefore, because the necessity of water pollution management in the urban stream, inorganic N and P nutrients should be included as an essential component of water quality criteria in the advanced water quality project of Korean Government by enforcing of water quality assessment and total maximum daily loads (TMDLs).

Dissolved Methane Measurements in Seawater and Sediment Porewater Using Membrane Inlet Mass Spectrometer (MIMS) System (Membrane Inlet Mass Spectrometer (MIMS) 시스템을 이용한 해수 및 퇴적물 공극수내 용존 메탄의 측정)

  • An, Soon-Mo;Kwon, Ji-Nam;Lim, Jea-Hyun;Park, Yun-Jung;Kang, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2007
  • Membrane inlet mass spectrometer (MIMS) has been used to accurately quantify dissolved gases in liquid samples. In this study, the MIMS system was applied to measure dissolved methane in seawater and sediment porewater. To evaluate the accuracy of the measurement, liquid samples saturated with different methane partial pressure were prepared and the methane concentrations were quantified with the MIMS system. The measured values correspond well with the expected values calculated from solubility constants. The standard error of the measurements were $0.13{\sim}0.9%$ of the mean values. The distribution of dissolved methane concentration in seawater of the South Sea of Korea revealed that the physical parameters primarily control the methane concentration in sea water. The MIMS system was effective to resolve the small dissolved methane difference among water masses. The probe type inlet in MIMS system was proven to be effective to measure porewater methane concentration.