• 제목/요약/키워드: Expectation maximization

검색결과 222건 처리시간 0.027초

Iterative Channel Estimation for Higher Order Modulated STBC-OFDM Systems with Reduced Complexity

  • Basturk, Ilhan;Ozbek, Berna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2446-2462
    • /
    • 2016
  • In this paper, a frequency domain Expectation-Maximization (EM)-based channel estimation algorithm for Space Time Block Coded-Orthogonal Frequency Division Multiplexing (STBC-OFDM) systems is investigated to support higher data rate applications in wireless communications. The computational complexity of the frequency domain EM-based channel estimation is increased when higher order constellations are used because of the ascending size of the search set space. Thus, a search set reduction algorithm is proposed to decrease the complexity without sacrificing the system performance. The performance results of the proposed algorithm is obtained in terms of Bit Error Rate (BER) and Mean Square Error (MSE) for 16QAM and 64QAM modulation schemes.

EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성 (Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF

하이퍼스펙트럴 영상의 무감독 변화탐지를 위한 SSS 알고리즘과 기대최대화 기법의 적용 (The Application of the Spectral Similarity Scale Algorithm and Expectation-Maximization for Unsupervised Change Detection using Hyperspectral Image)

  • 김용현;김대성;김용일;유기윤
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2007년도 GIS 공동춘계학술대회 논문집
    • /
    • pp.139-144
    • /
    • 2007
  • Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.

  • PDF

실내 환경 이미지 매칭을 위한 GMM-KL프레임워크 (GMM-KL Framework for Indoor Scene Matching)

  • Kim, Jun-Young;Ko, Han-Seok
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.61-63
    • /
    • 2005
  • Retreiving indoor scene reference image from database using visual information is important issue in Robot Navigation. Scene matching problem in navigation robot is not easy because input image that is taken in navigation process is affinly distorted. We represent probabilistic framework for the feature matching between features in input image and features in database reference images to guarantee robust scene matching efficiency. By reconstructing probabilistic scene matching framework we get a higher precision than the existing feaure-feature matching scheme. To construct probabilistic framework we represent each image as Gaussian Mixture Model using Expectation Maximization algorithm using SIFT(Scale Invariant Feature Transform).

  • PDF

A Finite Mixture Model for Gene Expression and Methylation Pro les in a Bayesian Framewor

  • Jeong, Jae-Sik
    • 응용통계연구
    • /
    • 제24권4호
    • /
    • pp.609-622
    • /
    • 2011
  • The pattern of methylation draws significant attention from cancer researchers because it is believed that DNA methylation and gene expression have a causal relationship. As the interest in the role of methylation patterns in cancer studies (especially drug resistant cancers) increases, many studies have been done investigating the association between gene expression and methylation. However, a model-based approach is still in urgent need. We developed a finite mixture model in the Bayesian framework to find a possible relationship between gene expression and methylation. For inference, we employ Expectation-Maximization(EM) algorithm to deal with latent (unobserved) variable, producing estimates of parameters in the model. Then we validated our model through simulation study and then applied the method to real data: wild type and hydroxytamoxifen(OHT) resistant MCF7 breast cancer cell lines.

GLFP 모형하에서의 가속수명시험 데이터 분석 (Analyses of Accelerated Life Tests Data from General Limited Failure Population)

  • 김종만
    • 품질경영학회지
    • /
    • 제36권1호
    • /
    • pp.31-39
    • /
    • 2008
  • This paper proposes a method of estimating the lifetime distribution at use condition for constant stress accelerated life tests when an infant-mortality failure mode as well as wear-out one exists. General limited failure population model is introduced to describe these failure modes. It is assumed that the log lifetime of each failure mode follows a location-scale distribution and a linear relation exists between the location parameter and the stress. An estimation procedure using the expectation and maximization algorithm is proposed. Specific formulas for Weibull distribution are obtained. An illustrative example and the simulation results are given.

Audio Source Separation Based on Residual Reprojection

  • Cho, Choongsang;Kim, Je Woo;Lee, Sangkeun
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.780-786
    • /
    • 2015
  • This paper describes an audio source separation that is based on nonnegative matrix factorization (NMF) and expectation maximization (EM). For stable and highperformance separation, an effective auxiliary source separation that extracts source residuals and reprojects them onto proper sources is proposed by taking into account an ambiguous region among sources and a source's refinement. Specifically, an additional NMF (model) is designed for the ambiguous region - whose elements are not easily represented by any existing or predefined NMFs of the sources. The residual signal can be extracted by inserting the aforementioned model into the NMF-EM-based audio separation. Then, it is refined by the weighted parameters of the separation and reprojected onto the separated sources. Experimental results demonstrate that the proposed scheme (outlined above) is more stable and outperforms existing algorithms by, on average, 4.4 dB in terms of the source distortion ratio.

Text-Independent Speaker Verification Using Variational Gaussian Mixture Model

  • Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.914-923
    • /
    • 2011
  • This paper concerns robust and reliable speaker model training for text-independent speaker verification. The baseline speaker modeling approach is the Gaussian mixture model (GMM). In text-independent speaker verification, the amount of speech data may be different for speakers. However, we still wish the modeling approach to perform equally well for all speakers. Besides, the modeling technique must be least vulnerable against unseen data. A traditional approach for GMM training is expectation maximization (EM) method, which is known for its overfitting problem and its weakness in handling insufficient training data. To tackle these problems, variational approximation is proposed. Variational approaches are known to be robust against overtraining and data insufficiency. We evaluated the proposed approach on two different databases, namely KING and TFarsdat. The experiments show that the proposed approach improves the performance on TFarsdat and KING databases by 0.56% and 4.81%, respectively. Also, the experiments show that the variationally optimized GMM is more robust against noise and the verification error rate in noisy environments for TFarsdat dataset decreases by 1.52%.

Bayesian 적응 방식을 이용한 잡음음성 인식에 관한 연구 (A Study on Noisy Speech Recognition Using a Bayesian Adaptation Method)

  • 정용주
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.21-26
    • /
    • 2001
  • 본 논문에서는 잡음에 강인한 음성인식을 위해서 expectation-maximization (EM) 방식을 이용하여 잡음의 평균값을 추정하는 새로운 알고리듬을 제안하였다. 제안된 알고리듬에서는 온라인상의 인식용 음성이 직접 Bayesian 적응을 위해서 사용되며, 또한 훈련데이터를 이용하여 잡음의 평균값에 대한 사전 (prior) 분포를 알아낸 후 Bayesian 적응시에 이용한다. 잡음 음성의 모델링을 위해서는 PMC (parallel model combination) 방식을 이용하였고, 제안된 방식을 이용하여 자동차 잡음 환경 하에서 인식 실험을 수행한 결과, 기존의 PMC 방식에 비해서 향상된 인식성능을 보임을 알 수 있었다.

  • PDF

HAPS 기반 네트워크에서의 실시간 이동 기지국 위치 문제 해결 정책 (HAPS Network MBS placement with EM Clustering Algorithm)

  • 정웅희;송하윤;조관식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.1307-1310
    • /
    • 2008
  • EM(Expectation Maximization)은 불확실한 데이터들을 가지고 분포를 모델링하는, 널리 알려진 군집화 알고리즘이다. EM 알고리즘에서, 정규 분포는 기대(Expectation)-최대화(Maximization)과정을 반복하는 과정에서 그 윤곽을 다져간다. 이 때 이 과정은 EM 알고리즘의 다양한 확률 초기화에 따라 다른 결과를 내게 된다, 본 논문에서는 이 확률 초기화 값의 조정을 통하여 HAPS(High Altitude Platform Station) 기반 네트워크에서 이동 기지국의 위치를 실시간으로 결정하고자 하는 문제를 풀기 위한 조건을 몇 가지 반영시켜 확률 초기 값을 결정해 보고, 그 결과를 제시한다. 이에 더불어, ITU에서 제한하고 있는 이동 기지국의 서비스 반경을 고려하는 방법을 제시한다.