• 제목/요약/키워드: Expectation Maximization(EM)

검색결과 139건 처리시간 0.022초

EM 알고리즘 및 메타휴리스틱을 통한 다이나믹 환경에서의 베이지안 네트워크 학습 전파 프레임웍 (Learning and Propagation Framework of Bayesian Network using Meta-Heuristics and EM algorithm considering Dynamic Environments)

  • 추상현;이현수
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.335-342
    • /
    • 2016
  • 기 구축되어있는 베이지안 네트워크에서 다이나믹한 환경 변화가 발생 할 때, 관련된 베이지안 네트워크의 파라미터는 새롭게 형성된 데이터의 패턴에 적응하여 새로운 파라미터로 변경되어야 한다. 이때, 새로운 파라미터는 베이지안 네트워크의 인과관계를 고려하여 변경되어야 한다. 본 논문에서는 Expectation Maximization(EM)알고리즘과 Meta-Heuristics 기법 중 하나인 Harmony Search(HS)알고리즘을 이용한 다이나믹한 파라미터 업데이트 프레임웍을 제안한다. 일반적으로, EM 알고리즘은 숨겨진 파라미터를 추정하는데 유효한 알고리즘이지만 지역 최적값에 수렴한다는 단점을 가지고 있다. 이 문제를 해결하기 위해서 본 논문은 Maximum Likelihood Estimator(MLE)의 파라미터가 글로벌 최적값을 지향하도록 하기위하여 메타휴리스틱 방법론의 하나인 HS를 적용한다. 제안된 방법은 EM 알고리즘의 단점을 보완하고 글로벌 최적값에 수렴하는 MLE의 파라미터를 추정하여 다이나믹하게 변화하는 환경에서도 사용 가능한 베이지안 네트워크의 학습 및 전파프레임웍을 제시한다.

나이브베이즈 문서분류시스템을 위한 선택적샘플링 기반 EM 가속 알고리즘 (Accelerating the EM Algorithm through Selective Sampling for Naive Bayes Text Classifier)

  • 장재영;김한준
    • 정보처리학회논문지D
    • /
    • 제13D권3호
    • /
    • pp.369-376
    • /
    • 2006
  • 본 논문은 온라인 전자문서환경에서 전통적 베이지안 통계기반 문서분류시스템의 분류성능을 개선하기 위해 EM(Expectation Maximization) 가속 알고리즘을 접목한 방법을 제안한다. 기계학습 기반의 문서분류시스템의 중요한 문제 중의 하나는 양질의 학습문서를 확보하는 것이다. EM 알고리즘은 소량의 학습문서집합으로 베이지안 문서분류 알고리즘의 성능을 높이는데 활용된다. 그러나 EM 알고리즘은 최적화 과정에서 느린 수렴성과 성능 저하 현상을 나타내는데, EM 알고리즘의 기본 가정을 따르지 않는 온라인 전자문서환경에서 특히 그러하다. 제안 기법의 주요 아이디어는 전통적 EM 알고리즘을 개선하기 위해 불확정성도 기반 선택적 샘플링 기법을 활용한 것이다. 성능평가를 위해 Reuter-21578 문서집합을 사용하여, 제안 알고리즘의 빠른 수렴성을 보이고 전통적 베이지안 알고리즘의 분류 정확성을 향상시켰음을 보인다.

Bayesian 적응 방식을 이용한 잡음음성 인식에 관한 연구 (A Study on Noisy Speech Recognition Using a Bayesian Adaptation Method)

  • 정용주
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.21-26
    • /
    • 2001
  • 본 논문에서는 잡음에 강인한 음성인식을 위해서 expectation-maximization (EM) 방식을 이용하여 잡음의 평균값을 추정하는 새로운 알고리듬을 제안하였다. 제안된 알고리듬에서는 온라인상의 인식용 음성이 직접 Bayesian 적응을 위해서 사용되며, 또한 훈련데이터를 이용하여 잡음의 평균값에 대한 사전 (prior) 분포를 알아낸 후 Bayesian 적응시에 이용한다. 잡음 음성의 모델링을 위해서는 PMC (parallel model combination) 방식을 이용하였고, 제안된 방식을 이용하여 자동차 잡음 환경 하에서 인식 실험을 수행한 결과, 기존의 PMC 방식에 비해서 향상된 인식성능을 보임을 알 수 있었다.

  • PDF

HAPS 기반 네트워크에서의 실시간 이동 기지국 위치 문제 해결 정책 (HAPS Network MBS placement with EM Clustering Algorithm)

  • 정웅희;송하윤;조관식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.1307-1310
    • /
    • 2008
  • EM(Expectation Maximization)은 불확실한 데이터들을 가지고 분포를 모델링하는, 널리 알려진 군집화 알고리즘이다. EM 알고리즘에서, 정규 분포는 기대(Expectation)-최대화(Maximization)과정을 반복하는 과정에서 그 윤곽을 다져간다. 이 때 이 과정은 EM 알고리즘의 다양한 확률 초기화에 따라 다른 결과를 내게 된다, 본 논문에서는 이 확률 초기화 값의 조정을 통하여 HAPS(High Altitude Platform Station) 기반 네트워크에서 이동 기지국의 위치를 실시간으로 결정하고자 하는 문제를 풀기 위한 조건을 몇 가지 반영시켜 확률 초기 값을 결정해 보고, 그 결과를 제시한다. 이에 더불어, ITU에서 제한하고 있는 이동 기지국의 서비스 반경을 고려하는 방법을 제시한다.

EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성 (Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF

Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법 (A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms)

  • Daewon Kim
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.15-26
    • /
    • 2003
  • 초음파 검사 방법은 여러 가지 물질들의 흠집이나 틈새, 그리고 티끌 등을 감지해내는데 널리 쓰이고 있다. 그 중 초음파 신호를 분석하는 절차는 전체의 신호처리 과정에서 아주 중요한 역할을 담당하고 있다. 많은 초음파 신호처리와 신호분류의 방법들이 제기 되었는데 그 중 가장 널리 쓰이는 방법은 신호들의 특징 공간상에서 그 특정의 성분들을 추출해내고 그 후 신경망 네트웍을 통한 분류 방법을 이용하여 초음파 신호들을 구별해 내는 방법이다. 이 논문은 기존의 신호 분류 체계와는 다른 대체 신호 분류법을 제시하고 있는데 이것은 최소 평균 제곱 (LMS) 알고리즘을 이용하여 핵 전력 발전소에서 쓰이는 증기 발생기 튜브로부터 감지되어진 초음파 비파괴 검사 신호 (ultrasonic nondestructive evaluation signal) 을 분류해내는데 쓰일 수가 있다 이 초음파 비파괴 검사 신호는 튜브내의 흠집이나 틈새로부터 감지되어진 신호일수도 있고 또는 튜브내의 침전물에 의해서 발생된 신호일 수도 있는데 이 두가지 신호는 매우 유사하기 때문에 반드시 분류를 해내어 침전물에 의한 신호일 경우는 무방하지만 흠집이나 갈라진 틈새에서 나오는 신호일 경우는 더 이상의 오염이나 사고 등을 방지하기 위해 수리 또는 교체 등의 후속 조치로 이어져야 한다. 이러한 절차를 밟기 위하여 증기 발생기 튜브의 내부에서의 초음파 센서로부터 증기 발생기 튜브 사이의 거리를 측정하는데 모델링 기법에 기반한 deconvolution 방법이 제시되었고 여기서 나온 결과가 정리, 분석되었다 이 방법은 space alternating generalized expectation maximization (SAGE) 알고리즘을 이차원 미분 파라미터인 Hessian의 사용으로 인하여 수렴 속도가 빠른 Newton-Raphson 알고리즘과 함께 병행 사용하여 초음파 신호의 초점 도달 시간과 그 크기를 측정하여 초점 도달 거리에 따라 두 종류의 신호를 분류, 차별화 하는 기법이다. 이 알고리즘을 이용한 접근법으로 얻어진 결과가 흠집이나 틈새로부터 나온 신호일 경우와 퇴적물에 의해 나온 신호일 경우로 정리, 분류되었고 적절한 분류 효과를 보인 결과가 이 논문에 제시되었다.

  • PDF

Active Shape 모델과 Gaussian Mixture 모델을 이용한 입술 인식 ((Lip Recognition Using Active Shape Model and Gaussian Mixture Model))

  • 장경식;이임건
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.454-460
    • /
    • 2003
  • 이 논문은 입술의 형태를 효과적으로 인식하는 방법을 제안하였다. 입술은 PDM(Point Distribution Model)을 기반으로 점들의 집합으로 표현하였다. 주성분 분석법을 적용하여 입술 모델을 구하고 모델에서 사용하는 형태계수의 분포를 GMM(Gaussian Mixture Model)을 이용하여 구하였다. 이 과정에서 계수를 정하기 위하여 EM(Expectation Maximization) 알고리듬을 사용하였다. 입술 경계선 모델은 입술을 구성하는 각 점과 주변 영역에서의 화소간 변화를 이용하여 구성하였으며 입술 탐색시 사용되었다. 여러 영상을 대상으로 실험한 결과 좋은 결과를 얻었다.

A Efficient Image Separation Scheme Using ICA with New Fast EM algorithm

  • Oh, Bum-Jin;Kim, Sung-Soo;Kang, Jee-Hye
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.623-629
    • /
    • 2004
  • In this paper, a Efficient method for the mixed image separation is presented using independent component analysis and the new fast expectation-maximization(EM) algorithm. In general, the independent component analysis (ICA) is one of the widely used statistical signal processing scheme in various applications. However, it has been known that ICA does not establish good performance in source separation by itself. So, Innovation process which is one of the methods that were employed in image separation using ICA, which produces improved the mixed image separation. Unfortunately, the innovation process needs long processing time compared with ICA or EM. Thus, in order to overcome this limitation, we proposed new method which combined ICA with the New fast EM algorithm instead of using the innovation process. Proposed method improves the performance and reduces the total processing time for the Image separation. We compared our proposed method with ICA combined with innovation process. The experimental results show the effectiveness of the proposed method by applying it to image separation problems.

Iterative Channel Estimation for Higher Order Modulated STBC-OFDM Systems with Reduced Complexity

  • Basturk, Ilhan;Ozbek, Berna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2446-2462
    • /
    • 2016
  • In this paper, a frequency domain Expectation-Maximization (EM)-based channel estimation algorithm for Space Time Block Coded-Orthogonal Frequency Division Multiplexing (STBC-OFDM) systems is investigated to support higher data rate applications in wireless communications. The computational complexity of the frequency domain EM-based channel estimation is increased when higher order constellations are used because of the ascending size of the search set space. Thus, a search set reduction algorithm is proposed to decrease the complexity without sacrificing the system performance. The performance results of the proposed algorithm is obtained in terms of Bit Error Rate (BER) and Mean Square Error (MSE) for 16QAM and 64QAM modulation schemes.

하이퍼스펙트럴 영상의 무감독 변화탐지를 위한 SSS 알고리즘과 기대최대화 기법의 적용 (The Application of the Spectral Similarity Scale Algorithm and Expectation-Maximization for Unsupervised Change Detection using Hyperspectral Image)

  • 김용현;김대성;김용일;유기윤
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2007년도 GIS 공동춘계학술대회 논문집
    • /
    • pp.139-144
    • /
    • 2007
  • Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.

  • PDF