• Title/Summary/Keyword: Expansive additive

Search Result 50, Processing Time 0.026 seconds

Physical Properties of Concrete Using Shrinkage Reducing Admixture and Expansive Additive (수축저감제와 팽창재를 혼입한 콘크리트의 물리적 특성)

  • Jung, Yang-Hee;Song, Young-Chan;Kim, Yong-Ro;Han, Hyung-Sub;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.919-922
    • /
    • 2008
  • This paper reports the physical and shrinkage properties of concrete using expansive additive(E) and three shrinkage reducing admixtures(SRA1, 2, 3) in order to reduce shrinkage of concrete. For the properties of fresh concrete, the use of SRA1, 2, 3 results in a increase in fluidity and decrease in the dosage of super plasticizer as much as 0.05$\sim$0.1%. And For the properties of hardened concrete, the use of SRA1, 2, 3 results in a decrease in compressive, tensile and flexural strength slightly. For drying shrinkage properties, the use of SRA3 is the most effective for reduction of shrinkage, and the next best way to reduce shrinkage is combination with expansive additive(E) and shrinkage reducing admixture(SRA) or the using of expansive additive(E).

  • PDF

Properties of Shrinkage in Concrete Incorporating Shrinkage Reducing Agent and Expansive Additive (수축저감제와 팽창재를 병용 치환한 콘크리트의 수축 특성)

  • 김광화;문학룡;심영태;이병상;정용희;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.61-64
    • /
    • 2004
  • This study is to investigate the engineering and shrinkage properties of concrete incorporating shrinkage reducing agent(SRA) and expansive additive(EA) in order to reduce shrinkage of concrete. According to results, as for the properties of fresh concrete, increase in, SRA and EA content leads to reduce the fluidity but to increase the air content, and as for setting time, there is little difference. For strength properties, it decreased with an increase in SRA dosage and increased up to 5% of EA content. For the properties of drying shrinkage, it shows decline tendency with an increase in SRA and EA content reiteratively. It alto reduces significantly with the combination of SRA-EA systems due to the combined effect of the admixture. In the scope of this paper, it is found that the use of SRA with 0.5% and EA with 5% has optimum effects on the various properties of concrete. And under the combination of SRA and EA, it can reduce drying shrinkage about 37%.

  • PDF

A Study on the Properties of Concrete with the Variation of Addition Ratio of Expansive Additives (팽창재 혼입율 변화에 따른 콘크리트의 특성에 관한 연구)

  • 신언구;이대주;홍상희;전병채;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.229-234
    • /
    • 1997
  • The objective of this study is to develop the non crack ready mixed concrete and the high quality concrete under various addition ratios of expansive additives. According to the experiment results, when expansive additive are mixed in concrete mixture by about 6% per cement contents, in W/B of 45~55%, it is found that the strength increase and the shrinkage compensation can be achieved by about 2~3 times. And it is considered to produce high quality concrete and non crack ready mixed concrete.

  • PDF

A Basic Study on the Control of Autogenous Shrinkage of Super high strength Concrete Using Gypseous Expansive Additive (석고계 팽창재를 사용한 초고강도콘크리트의 자기수축 제어에 관한 기초적 연구)

  • Park, Hyun;Yoon, Ki-Hyun;Cho, Seung-Ho;Kim, Kwang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.439-440
    • /
    • 2009
  • Super high strength concrete tends to have compact tissue structure, and to have large reduction of volume by hydration reaction or large shrinkage by autogenous shrinkage. Thus, this study conducted basic research on the control of autogenous shrinkage of super high strength concrete using gypseous expansive additive.

  • PDF

A Study of the Shrinkage Reduction in High Performance Concrete according to the Adding Ratio of Anti-Shrinkage Agent (수축저감제 혼입률 변화에 따른 고성능 콘크리트의 수축저감에 관한 연구)

  • 한천구;김호림;문학용;강수태;고경택;김도겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.473-476
    • /
    • 2003
  • This study discusses the use of anti-shrinkage agent as the method to reduce autogenous and drying shrinkage. According to results, as for the fundamental properties of high performance concrete, fluidity and strength decrease with an increase of the adding ratio of anti-shrinkage agent, but air content increases. Compared with plain concrete, autogenous and drying shrinkage are reduced by 12~52% and 4~22% respectively upto the adding rario of anti-shrinkage agent of 2.0%. When expansive additive is added by 5.0%, they are also reduced by 38~95% and 15~50% respectively. Therefore, as expansive additive of 5.0% and anti-shrinkage agent of 1.0% are added to high performance concrete of around W/B 30%, it is considered that fluidity and strength are hardly influenced, and in addition, crack by shrinkage can be prevented effectively.

  • PDF

A Field Application of Non-shrinkage Concrete Pavement using CSA Expansive Additive (CSA계 팽창재를 사용한 무수축콘크리트의 도로포장 현장적용 사례연구)

  • 이재한;송경환;최일규;김창률;민경소
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.183-188
    • /
    • 1997
  • From a viewpoint of construction cost and preserving management of pavement, a policy of domestic pavement was gradually spreaded concrete pavement rather than asphalt. But the use of concrete with ordinary portland cement has shortages, such as dry-shrinkage, low flexural strength, etc. In order to overcome these problems, the concrete pavement using CSA expansive additive (Non-Shrinkage Cement) was studied and carried out the fie이 application. As the results, we find out Non-Shrinkage Cement that was distinguished in short-term construction by increasing flexural strength, shrinkage compensating and low-heat evaluation compared with OPC concrete.

  • PDF

Prediction Model on Autogenous Shrinkage of High Performance Concrete Used Material for Shrinkage Reduction (수축저감재료의 영향을 고려한 고성능 콘크리트의 자기수축 예측 모델)

  • Koh Kyoung-Taek;Kang Su-Tae;Yoo Sung-Won;Kim Do-Gyeong;Han Cheon-Goo;Lee Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.285-288
    • /
    • 2004
  • Generally, the autogenous shrinkage of high performance concrete is important in that it can lead the early cracks in concrete structures. In the previous study, The. autogenous shrinakge of HPC was found to decrease with incresing expansive additive and shrinakge reduction agent. In case of combined use, the autogenous shrinakge was more reduction than in case separate use. The purpose of this study is to derive a realistic equation to estimate the autogenous shrinakge model of high performance concrete with exapnsive agent and shrinakge reduction agent. investigated the durability of high performance concrete using expansive additive and shrinkage reducing agent. The proposed equation showed reasonably good correlation with test data on autogenous shrinakge of high performance concrete with material for shrinkage reduction.

  • PDF

A Study on Properties of Ultra High Strength Concrete of above 100MPa (100MPa급 이상의 초고강도 콘크리트의 자기수축 특성에 관한 연구)

  • Lee, Sang-Ho;Kim, U-Jae;No, Hyeon-Seung;Lee, Jae-Sam;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.677-680
    • /
    • 2008
  • The autogenous shrinkage of HPC is important in that it can lead the early cracks in concrete structures. The purpose of the present study is to explore the autogenous shrinkage of HPC with cellulose fiber and expansive additive and to derive a realistic equation to estimate the autogenous shrinkage model of that. For this purpose, comprehensive experimental program has been set up to observe the autogenous shrinkage for various test series. Major test variables were the quantity of expansive additive and cellulose fiber. Water-cement ratio is fixed with 13%. The autogenous shrinkage of HPC is found to decrease with increasing expansive additive and cellulose fiber. A prediction equation to estimate the autogenous shrinkage of HPC was derived and proposed in this study. The proposed equation shows reasonably good correlation with test data on autogenous shrinkage of HPC.

  • PDF

A Study on the Dry-Shrinkage Properties For Floor Mortar With Crack-Reducing (균열저감형 바닥마감전용 모르터의 건조수축특성 연구)

  • 이종렬;이웅종;채재홍;박경상;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.175-180
    • /
    • 1999
  • The heating system of korea apartment house is called Ondol. The surface finishing mortar of this floor system typically used the cement based mortar, where the surface finishing mortar easily appears the crack. To order to crack control, the cement that added expansive additive used to reducing dry-shrinkage. For the surface finishing mortar, the types of shrinkage is known as plastic shrinkage, dry-shrinkage and autogenous This experimental study is to investigate the difference on dry-shrinkage of the cement that added expansive additives and OPC. The test method is varied the ration of water/cement (W/C) and the ratio of sand/cement(S/C). For OPC, The increase of the ratio of S/C is reduced dry-shirnkage but for the cement that added expansive additives, the increase of the ratio of S/C is augmented dry-shrinkage For OPC, The increase of the ratio of W/C is augmented dry-shrinkage but for the cement that added expensive, the increased of the ratio of W/C is reduced dry-shrinkage.

  • PDF

A Study on Properties of CFT filled with Expansion Concrete (팽창 콘크리트를 충전한 강관충전 콘크리트의 물성에 관한 연구)

  • Park, Chun-Young;Lee, Jin-Sung;Song, Jong-Mok;Kim, Hyo-Youl;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The Purpose of this is properties of CFT filled with expansion concrete. CFT(concrete filled steel tube) is the structure that circle shape steel column filled with concrete. 3 kinds of expansive additives and variation of replacement rate. we changed expansive additive from 0%, 10%, 20%, 30% of ratio of addition rate are selected for this experiment. Merits of CFT are concrete internal force rising influenced by steel shape restriction, reinforcing the local buckling, excellent resistance to transformation. Generally, High rise building using CFT utilize the high strength and fluidity concrete for packing the tube inside. As the result a steel tube charged expensive concrete has stiffness 1.5times more than a steel tube not charged concrete. Increase of resisting power about compressive stress by binding expansion of expansive concrete affects strength increase and softness.

  • PDF