• Title/Summary/Keyword: Expansion of Object Detection

Search Result 19, Processing Time 0.021 seconds

Recognition of Moving Objects in Mobile Robot with an Omnidirectional Camera (전방위카메라를 이용한 이동로봇에서의 이동물체 인식)

  • Kim, Jong-Cheol;Kim, Young-Myoung;Suga, Yasuo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • This paper describes the recognition method of moving objects in mobile robot with an omnidirectional camera. The moving object is detected using the specific pattern of an optical flow in omnidirectional image. This paper consists of two parts. In the first part, the pattern of an optical flow is investigated in omnidirectional image. The optical flow in omnidirectional image is influenced on the geometry characteristic of an omnidirectional camera. The pattern of an optical flow is theoretically and experimentally investigated. In the second part, the detection of moving objects is presented from the estimated optical flow. The moving object is extracted through the relative evaluation of optical flows which is derived from the pattern of optical flow. In particular, Focus-Of-Expansion (FOE) and Focus-Of-Contraction (FOC) vectors are defined from the estimated optical flow. They are used as reference vectors for the relative evaluation of optical flows. The proposed algorithm is performed in four motions of a mobile robot such as straight forward, left turn, right turn and rotation. Experimental results using real movie show the effectiveness of the proposed method.

  • PDF

A Study on Building a Scalable Change Detection System Based on QGIS with High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 QGIS 기반 확장 가능한 변화탐지 시스템 구축 방안 연구)

  • Byoung Gil Kim;Chang Jin Ahn;Gayeon Ha
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1763-1770
    • /
    • 2023
  • The availability of high-resolution satellite image time series data has led to an increase in change detection research. Various methods are being studied, such as satellite image pixel and object-level change detection algorithms, as well as algorithms that apply deep learning technology. In this paper, we propose a QGIS plugin-based system to enhance the utilization of these useful results and present an actual implementation case. The proposed system is a system for intensive change detection and monitoring of areas of interest, and we propose a convenient system expansion method for algorithms to be developed in the future. Furthermore, it is expected to contribute to the construction of satellite image utilization systems by presenting the basic structure of commercialization of change detection research.

The Image Segmentation Method using Adaptive Watershed Algorithm for Region Boundary Preservation

  • Kwon, Dong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This paper proposes an adaptive threshold watershed algorithm, which is the method used for image segmentation and boundary detection, which extends the region on the basis of regional minimum point. First, apply adaptive thresholds to determine regional minimum points. Second, it extends the region by applying adaptive thresholds based on determined regional minimum points. Traditional watershed algorithms create over-segmentation, resulting in the disadvantages of breaking boundaries between regions. These segmentation results mainly from the boundary of the object, creating an inaccurate region. To solve these problems, this paper applies an improved watershed algorithm applied with adaptive threshold in regional minimum point search and region expansion in order to reduce over-segmentation and breaking the boundary of region. This resulted in over-segmentation suppression and the result of having the boundary of precisely divided regions. The experimental results show that the proposed algorithm can apply adaptive thresholds to reduce the number of segmented regions and see that the segmented boundary parts are correct.

Land Cover Change Detection over Urban Stream's Drainage Area Using Landsat TM and ETM+ Images (Landsat TM과 ETM+ 영상을 이용한 도시하천 집수구역의 토지이용변화 파악)

  • Kim, Jae-Cheol;Park, Cheol-Hyun;Shin, Dong-Hoon;Lee, Kyoo-Seock
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.575-579
    • /
    • 2006
  • The land use in suburban area has been changed rapidly due to the urban expansion in Korea during the last few decades. And such land use changes result in various environmental problems such as biodiversity decrease, habitat fragmentation, air pollution and urban heat island. Remote Sensing (RS) and Geographical Information Systems (GIS) can be used for land cover change detection to understand the impact and trend of the land use change. Change detection is the process of identifying differences in the state of an object or phenomenon by observing it at different times and it can provide quantitative and comparative information for the land use/cover change. RS is less expansive than field survey for producing land use maps, and can be accessed quickly and repetitively for large area. Also it can be used for change detection using multi-temporal land use/cover by accumulated data. Therefore, the purpose of this study is to detect and quantitatively evaluate urban land cover change in urban stream watershed area for the last few decades and ultimately to provide the basic data for urban land use planning and management.

Text extraction in images using simplify color and edges pattern analysis (색상 단순화와 윤곽선 패턴 분석을 통한 이미지에서의 글자추출)

  • Yang, Jae-Ho;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a text extraction method by pattern analysis on contour for effective text detection in image. Text extraction algorithms using edge based methods show good performance in images with simple backgrounds, The images of complex background has a poor performance shortcomings. The proposed method simplifies the color of the image by using K-means clustering in the preprocessing process to detect the character region in the image. Enhance the boundaries of the object through the High pass filter to improve the inaccuracy of the boundary of the object in the color simplification process. Then, by using the difference between the expansion and erosion of the morphology technique, the edges of the object is detected, and the character candidate region is discriminated by analyzing the pattern of the contour portion of the acquired region to remove the unnecessary region (picture, background). As a final result, we have shown that the characters included in the candidate character region are extracted by removing unnecessary regions.

Intelligent Mobile Surveillance System Based on Wireless Communication (무선통신에 기반한 지능형 이동 감시 시스템 개발)

  • Jang, Jae-Hyuk;Sim, Gab-Sig
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.11-20
    • /
    • 2015
  • In this paper, we develop an intelligent mobile surveillance system based on binary CDMA for the unmanned automatic tracking and surveillance. That is, we implement a intelligent surveillance system using the binary CDMA wireless communication technology which is applied the merit of CDMA and TDMA on it complexly. This system is able to monitor the site of the accident on network in real time and process the various situations by implementing the security surveillance system. This system pursues an object by the 360-degree using camera, expands image using a PTZ(Pan/Tilt/Zoom) camera zooming function, identifies the mobile objects image within a screen and transfers the identified image to the remote site. Finally, we show the efficiency of the implemented system through the simulation of the controlled situations, such as tracking coverage on objects, object expansion, object detection number, monitoring the remote transferred image, number of frame per second by the image output signal etc..

Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation (데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현)

  • Kim, Chi-young;Lee, Hyeon-Su;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.468-474
    • /
    • 2022
  • In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

A study on accident prevention AI system based on estimation of bus passengers' intentions (시내버스 승하차 의도분석 기반 사고방지 AI 시스템 연구)

  • Seonghwan Park;Sunoh Byun;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.57-66
    • /
    • 2023
  • In this paper, we present a study on an AI-based system utilizing the CCTV system within city buses to predict the intentions of boarding and alighting passengers, with the aim of preventing accidents. The proposed system employs the YOLOv7 Pose model to detect passengers, while utilizing an LSTM model to predict intentions of tracked passengers. The system can be installed on the bus's CCTV terminals, allowing for real-time visual confirmation of passengers' intentions throughout driving. It also provides alerts to the driver, mitigating potential accidents during passenger transitions. Test results show accuracy rates of 0.81 for analyzing boarding intentions and 0.79 for predicting alighting intentions onboard. To ensure real-time performance, we verified that a minimum of 5 frames per second analysis is achievable in a GPU environment. his algorithm enhance the safety of passenger transitions during bus operations. In the future, with improved hardware specifications and abundant data collection, the system's expansion into various safety-related metrics is promising. This algorithm is anticipated to play a pivotal role in ensuring safety when autonomous driving becomes commercialized. Additionally, its applicability could extend to other modes of public transportation, such as subways and all forms of mass transit, contributing to the overall safety of public transportation systems.