• Title/Summary/Keyword: Expansion mechanism

Search Result 426, Processing Time 0.026 seconds

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

Tibial Tunnel Enlargement following Arthroscopic ACL Reconstruction (관절경하 전방십자인대 재건술 후 경골 터널 크기 변화)

  • Lee, Kwang-Won;Lee, Byeong-Ki;Ryu, Chang-Soo;Keum, Teok-Seop;Choy, Won-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.2 no.2
    • /
    • pp.114-118
    • /
    • 1998
  • We retrospectively evaluated the changes in the diameter of the tibial tunnel over time following the reconstruction of the anterior cruciate ligament with a bone-patella tendon-bone(BPTB) autograft(25 cases) and quadruple semitendinosus(ST) graft(27 cases) in 52 patients at one year postoperatively. The changes in the geometry of the bony tunnel were measured with radiography. The demensions at final follow up were correated with the clinical results. An increased width of the tibial tunnel was noted in all cases. On the femoral side, however, no tunnel expansion was noted. In AP view, the average tibial tunnel enlargement in ST and BPTB graft groups were 1.30mm(13%) and 1.82mm(17%), respectively. In lateral view, the average tibial tunnel enlargement in ST and BPTB graft group was 1.30mm(13%) and 2.04mm(19%). The differences between two groups were not statistically significant, however, there was evidence of a borderline significance(P=0.0502). Although the tunnel enlargement does not appear to adversely affect the clinical outcome in the short term, the exact mechanism which are involved should be demonstrated. Furthermore histologic study is needed to evaluate graft replacements with emphasis on the graft-tunnel interface.

  • PDF

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

COMPUTATION OF LAMINAR NATURAL CONVECTION OF NANOFLUID USING BUONGIORNO'S NONHOMOGENEOUS MODEL (Buongiorno의 비균질 모델을 사용한 나노유체의 층류 자연대류 해석)

  • Choi, S.K.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2013
  • A numerical study of a laminar natural convection of the CuO-water nanofluid in a square cavity using the Buongiorno's nonhomogeneous model is presented. All the governing equations including the volume fraction equation are discretized on a cell-centered, non-uniform grid employing the finite-volume method with a primitive variable formulation. Calculations are performed over a range of Rayleigh numbers and volume fractions of the nanopartile. From the computed results, it is shown that both the homogeneous and nonhomogeneous models predict the deterioration of the natural convection heat transfer well with an increase of the volume fraction of nanoparticle at the same Rayleigh number, which was observed in the previous experimental studies. It is also shown that the differences in the computed results of the average Nusselt number at the wall between the homogeneous and nonhomogeneous models are very small, and this indicates that the slip mechanism of the Brown diffusion and thermophoresis effects are negligible in the laminar natural convection of the nanofluid. The degradation of the heat transfer with an increase of the volume fraction of the nanoparticle in the natural convection of nanofluid is due to the increase of the viscosity and the decrease of the thermal expansion coefficient and the specific heat. It is clarified in the present study that the previous controversies between the numerical and experimental studies are owing to the different definitions of the Nusselt number.

A COMPUTATIONAL ANALYSIS FOR OUTLET SHAPE DESIGN TO SUPPRESS FLOW RECIRCULATION IN A ROTATING-DISK CVD REACTOR (회전원판형 CVD 장치의 유동 재순환을 억제하는 출구부 형상 설계를 위한 전산해석)

  • Park, J.J.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.74-81
    • /
    • 2013
  • A numerical design analysis is conducted to search for an optimal shape of outlet in a rotating-disk CVD reactor. The goal is to suppress flow recirculation that has been found in a reactor having a sudden expansion of flow passage outside of the rotating disk. In order to streamline gas flow, the sidewall at which the flow in the Ekman layer is impinged, is tilted. The axisymmetric laminar flow and heat transfer in the reactor are simulated using the incompressible ideal gas model. For the conventional vertical sidewall, the flow recirculation forming in the corner region could be expanded into the interior to distort the upstream flow. The numerical results show that this unfavorable phenomenon inducing back flow could be dramatically suppressed by tilting the sidewall at a certain range of angle. The assessment of deviation in deposition rate based on the characteristic isotherm illustrates that the sidewall tilting may expand the domain of stable plug-like flow regime toward higher pressure. A physical interpretation is attempted to explain the mechanism to suppress flow recirculation.

Sulfate Attack Resistance and Microstructural Observations of Cement Matrix Exposed to a Low Temperature Condition (저온환경에 노출된 시멘트 경화체의 황산염침식 저항성 및 미세구조적 조사)

  • Lee, Seung-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.611-617
    • /
    • 2009
  • This paper reports an experimental study on the damage mechanism and resistance of Type I portland cement mortar and paste samples exposed to 5% sodium sulfate solution with different solution temperatures; namely, $4^{\circ}C$, $10^{\circ}C$ and $20^{\circ}C$. The resistance of mortar samples was evaluated using expansion, compressive strength and flexural strength measurements. Some microstructural observations such as x-ray diffraction, differential scanning calorimetry and scanning electron microscopy were also introduced to elucidate reactants formed by sulfate attack, especially in a low temperature condition. From the results, it was found that the degree of damage in the mortar samples was significantly associated with the temperature of sulfate solution. Low temperature of the sulfate solution led to the formation of thaumasite in mortar and paste samples, and subsequently a poor resistance to sulfate attack. Thus, it is noted that when concrete structures are exposed to sulfate media in the condition of a cold region or whether, special care should be taken.

Manufacturing Innovation and HPC (High Performance Computing) Utilization (제조업 혁신과 HPC(High Performance Computing) 활용)

  • Kim, Yong-yul
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.2
    • /
    • pp.231-253
    • /
    • 2016
  • The purpose of this study is two fold. First, we will explore the meaning, spread effect and consideration factors of manufacturing innovation in terms of theoretical perspective. Second, we will verify the status of high performance computing (HPC) utilization policy, and analyze the situation of US and Korea. Manufacturing innovation policy in each country has the objective in common which aims epoch-making enhancing of productivity. Nevertheless it can be characterized as innovation oriented policy rather than simple trial of productivity improvement. For long term growth and employment, the need for reindustrialization instead of deindustrialization should be recognized. Employment may be decreased temporarily and partially due to manufacturing innovation. However net effect of employment increasing will be bigger because of indirect employment. HPC utilization policy has the importance as a separate movement other than as a subset of manufacturing innovation. US government is trying to eliminate the bottleneck elements in adoption of HPC based M&S activity, and to promote the way of problem solving through the mechanism of public-private partnership, in spite of low level of HPC based M&S. In Korea, ecosystem related with the activity of HPC based M&S is needed, and expansion of M&S utilization in manufacturing companies and fostering of M&S supporting institutions will be important for this task.

Biomimetic Actuator and Sensor for Robot Hand (로봇 손용 인체모방형 구동기 및 센서)

  • Kim, Baek-Chul;Chung, Jinah;Cho, Hanjoung;Shin, Seunghoon;Lee, Hyongsuk;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Jachoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1497-1502
    • /
    • 2012
  • To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP-based capacitive sensor and evaluate its use as a robot hand sensor.

An Analytical Solution of Progressive Wave-Induced Residual Pore-Water Pressure in Seabed (진행파동장하 해저지반내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Ryu, Heung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • In this paper, the errors found in the existed analytical solutions described the mechanism of residual pore-water pressure accumulation were examined and a new analytical was proposed. The new analytical solution was derived by using a Fourier series expansion and separation of variables was verified by comparison with the existed both analytical and numerical solutions and experimental result. The new analytical solution is very simple that there is no need for numerical integration for deep soil thickness. In addition, the solutions of the residual pore-water pressure for finite, deep, and shallow soil thickness reveled that it is possible to approach from finite to shallow soil thickness, but not possible to deep soil thickness because there was discontinues zone between finite and deep soil thickness.

A Study on the Effect of the Stemming Hole medium to the Blasting Separation Distance of Structure (공내 매질이 구조물의 발파이격거리에 미치는 영향에 관한 연구)

  • Kang, Hee-Seop;Jeong, Jung-Gyu;Bang, Myung-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.100-108
    • /
    • 2017
  • Because of urbanization, Industrialization and expansion of transportation network, blasting works are recently increasing in construction field. The blasting work influences environmental effects to residents and the safety of facilities around the working place, so the development of blasting technology is needed to reduce the damage to residents. The blasting mechanism in the hole was studied and tested in the blasting sites by the difference of diameter between explosives and drilling hole, which is named by the decoupling effect. This effect was tested by changing the medium between explosives and hole wall in three working sites(railway, highway and industrial complex). The vibration velocity of blasting was recorded and vibration equations were produced by regression analyses. Finally, the structure separation distance was derived using these equations. The testing results show that the specific gravity of medium is larger, the separation distance is smaller and the duration time of blasting is shorter in case of large specific gravity of medium, so the vibration effect stops more fastly in the water compared with the air.