• Title/Summary/Keyword: Expansion Chamber

Search Result 207, Processing Time 0.025 seconds

A Study on the Thrust and Flow Characteristics of High Spin RAP(Rocket Assisted Projectile) (고속 회전하는 RAP(Rocket Assisted Projectile)의 추력 및 유동 특성에 관한 연구)

  • Ban, Youngwoo;Jung, Hyunho;Park, Juhyeon;Joo, Hyeonguk;Lee, Chihoon;Park, Yongin;Yoon, Jongwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1072-1076
    • /
    • 2017
  • In this paper, a numerical study has been performed to analyze flow characteristics of rocket propulsion. Through the ground spin test, combustion chamber pressure was measured. Based on the experimental results, numerical analysis was conducted under various nozzle pressure ratio conditions such as standard, operating and base pressure conditions. And it was compared with quasi-1D solution and experimental result. In addition, the difference in thrust characteristics according to the spin/non-spin of the flow conditions was confirmed at the same nozzle pressure ratio.

  • PDF

NUMERICAL ANALYSIS OF A SAMPLING MODULE FOR A FAST RESPONSE EXHAUST GAS ANALYZER

  • Kim, W.S.;Lee, J.H.;Yoo, J.S.;Rhee, B.O.;Park, J.I.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • The engine behavior in a transient condition is important to not only emission regulations but also fuel economy. A fast response gas analyzer can be a useful tool to investigate exhaust gas in a transient operation. It should be designed to analyze gas concentration with a short time constant by a fast sampling module and an appropriate measuring method for each emission element. In this study, a new fast sampling module is introduced and flow analysis is performed by numerical simulation. The analysis has shown the proper operating condition and the sensitivity of the module for practical application. Calculated flow to the sampling module has $0.5{\sim}4%$ error, while backflow toward the expansion tube is expected when pressure in CP (Constant Pressure) chamber is over 0.6 bar. For a stable supply of flow to the optical cell, sample gas pressure should be in the range, $0.35{\sim}1.90$ bar, when the pressure in the CP camber and the optical cell are 0.2 bar and 0.158 bar, respectively.

Computational Investigation of Pintle Nozzle Flow (핀틀 노즐 유동장의 수치해석적 연구)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Chang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • Both the nozzle expansion ratio and the chamber pressure are simultaneously and continuously changed according to pintle movement, resulting in a different internal flow structure and flow separation characteristics. In this paper, the pintle position effect on nozzle flow structure and separation phenomena is analyzed by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS(Reynold Averaged Navier Stokes) in Fluent, Spalart-Allmaras model is better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. And even if a conical nozzle is used, there is a shock structure similar to cap-shock pattern mainly occurred in contoured or shaped optimized nozzle because of internal shock generated from pintle tip flow separation.

Separate Type Rotary Engine Cycle Analysis (분리형 로터리엔진 사이클 해석)

  • Ki, Dockjong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • A separate type rotary engine consisting of a compressor and an expander is under development. The engine motoring, compressor pressure, and fuel combustion have been tested with the initial prototype for operability checks of the mechanism. This paper describes an engine cycle analysis method designed specifically for this new-concept engine. The unique operational mechanism of the engine and the thermodynamic properties of each step of air intake, compression, filling of combustion chamber, combustion, expansion and exhaust were analyzed. The cycle efficiencies of this engine according to various engine design parameters as well as the cooling effect of compressed air between the compressor and expander can be easily calculated with this method; further, some case studies are presented in this paper.

A Study on the Survey of Each Country's Standards to Prevent Flashover of Housing Building (주거시설의 플래시오버 방지를 위한 각국의 내장재 기준 조사에 관한 연구)

  • Hun, Ye-Rim;Kim, Yoon-Seong;Lee, Byeong-Heun;Jin, Seung-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.44-45
    • /
    • 2021
  • In Korea, the risk of fire in buildings is increasing. Therefore, efforts are needed to reduce casualties and property damage. Accordingly, it is important to limit the flashover so that the fire inside the building does not expand to the outside. Flashover refers to the generation of upward airflow after the fire in the compartment, and when combustible gas accumulates in the upper part of the fire chamber and reaches about 500℃, explosive expansion combustion occurs inside the compartment. This can suppress flashover due to limitations on building interior materials. To this end, internal limitations are being implemented at home and abroad through standards related to internal materials. In this paper, we intend to secure basic data on domestic fire safety design by comparing domestic and foreign standards and reviewing the Japanese housing interior design manual.

  • PDF

Comparison of Developmental Efficiency Following Cryopreservation of Hanwoo Embryos (한우 수정란의 동결보존 후 발달 효율 비교)

  • Cho, Sang-Rae;Choe, Chang-Yong;Kim, Hyun-Jong;Choi, Sun-Ho;Son, Dong-Soo
    • Journal of Embryo Transfer
    • /
    • v.23 no.3
    • /
    • pp.223-227
    • /
    • 2008
  • The cryopreservation of Hanwoo embryos has become an integral part of assisted reproduction in animal. The objective of this study was to assess the effect of The objectives of this study were: (1) to evaluate the influence of bovine embryo developmental stage on in vitro embryo development after freezing, (2) to study the efficiency compared with conventional freezed embryos at different embryo source. For conventional slow-freezing, day 7 or 8 expanded blastocysts were collected. The standard freezing medium was 1.8 M ethylene glycol (EG). Embryos were equilibrated in 1.8 Methylene glycol(EG) with 0.1 M sucrose in Dulbecco's phosphate-buffered saline (D-PBS) supplemented with 0.5% bovine serum albumin. Embryos were then loaded individually into 0.25 ml-straw and placed directly into cooling chamber of programmable freezer precooled to $-7^{\circ}C$, after 2 min, the straw was seeded, maintained at $-7^{\circ}C$ for 8 min, and then cooled to $-35^{\circ}C$ at $0.3^{\circ}C$/min, plunged and stored in liquid nitrogen for at least 3 days. For thawing, the straw containing embryos were warmed in air for 10 see and exposed to $37^{\circ}C$ water for 20 sec. Straws were then removed from $37^{\circ}C$ water. Rates of blastocyst survive and hatched were evaluated at 12 to 48h post-warming. The re-expansion and hatched rates of morula embryos were significantly lower than those obtained for blastocysts and expansion blastocysts (31.6%, 10.5% vs, 68.9%, 22.2% vs, 73.7%, 53.6%, respectively). No differences in re-expansion rates were found between in vivo and in vitro blastocysts. whereas hatched rates was significantly higher (51.2%) in vivo compared with in vitro embryos (18.6%). in conclusion, demonstrate that conventional freezing can be used successfully in cryopreservation of in vitro and in vivo bovine embryos, and that it might be considered for use in commercial programs and embryo preservation.

Design and Characterization of a Microwave Plasma Source Using a Rectangular Resonant Cavity (마이크로웨이브 공진 공동을 이용한 플라즈마 원의 설계 및 특성)

  • Kim, H.T.;Park, Y.S.;Sung, C.K.;Yi, J.R.;Hwang, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.408-418
    • /
    • 2008
  • The rectangular resonant cavity was designed and characterized as a microwave plasma source for focused ion beam. The optimum cavity was calculated analytically and analyzed in detail by using HFSS(High Frequency Structure Simulator). Since the resonant cavity can be affected by the permittivity of quartz chamber and plasma, the cavity is designed to be changeable in one direction. By observing the microwave input power at which the breakdown begins, the optimum cavity length for breakdown is measured and compared with the calculated one, showing in good agreement with the optimum length reduced by 10cm according to the permittivity change in the presence of quartz chamber. The shape of breakdown power curve as a function of pressure appears to be similar to Paschen-curve. After breakdown, plasma densities increase with microwave power and the reduced effective permittivity in the cavity with plasma results in larger optimum length. However, it is not possible to optimize the cavity condition for high density plasmas with increased input power, because too high input power causes expansion of density cutoff region where microwave cannot penetrate. For more accurate microwave cavity design to generate high density plasma, plasma column inside and outside the density cutoff region needs to be treated as a conductor or dielectric.

Comparative analysis of two methods of laser induced boron isotopes separation

  • K.A., Lyakhov;Lee, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.407-408
    • /
    • 2011
  • Natural boron consists of two stable isotopes 10B and 11B with natural abundance of 18.8 atom percent of 10B and 81.2 atom percent of 11B. The thermal neutron absorption cross-section for 10B and 11B are 3837 barn and 0.005 barn respectively. 10B enriched specific compounds are used for control rods and as a reactor coolant additives. In this work 2 methods for boron enrichment were analysed: 1) Gas irradiation in static conditions. Dissociation occurs due to multiphoton absorption by specific isotopes in appropriately tuned laser field. IR shifted laser pulses are usually used in combination with increasing the laser intensity also improves selectivity up to some degree. In order to prevent recombination of dissociated molecules BCl3 is mixed with H2S 2) SILARC method. Advantages of this method: a) Gas cooling is helpful to split and shrink boron isotopes absorption bands. In order to achieve better selectivity BCl3 gas has to be substantially rarefied (~0.01%-5%) in mixture with carrier gas. b) Laser intensity is lower than in the first method. Some preliminary calculations of dissociation and recombination with carrier gas molecules energetics for both methods will be demonstrated Boron separation in SILARC method can be represented as multistage process: 1) Mixture of BCl3 with carrier gas is putted in reservoir 2) Gas overcooling due to expansion through Laval nozzle 3) IR multiphoton absorption by gas irradiated by specifically tuned laser field with subsequent gradual gas condensation in outlet chamber It is planned to develop software which includes these stages. This software will rely on the following available software based on quantum molecular dynamics in external quantized field: 1) WavePacket: Each particle is treated semiclassicaly based on Wigner transform method 2) Turbomole: It is based on local density methods like density of functional methods (DFT) and its improvement- coupled clusters approach (CC) to take into account quantum correlation. These models will be used to extract information concerning kinetic coefficients, and their dependence on applied external field. Information on radiative corrections to equation of state induced by laser field which take into account possible phase transition (or crossover?) can be also revealed. This mixed phase equation of state with quantum corrections will be further used in hydrodynamical simulations. Moreover results of these hydrodynamical simulations can be compared with results of CFD calculations. The first reasonable question to ask before starting the CFD simulations is whether turbulent effects are significant or not, and how to model turbulence? The questions of laser beam parameters and outlet chamber geometry which are most optimal to make all gas volume irradiated is also discussed. Relationship between enrichment factor and stagnation pressure and temperature based on experimental data is also reported.

  • PDF

Plant Architecture and Flag Leaf Morphology of Rice Crops Exposed to Experimental Warming with Elevated CO2

  • Vu, Thang;Kim, Han-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.255-263
    • /
    • 2011
  • Projected increases in atmospheric $CO_2$ concentration ([$CO_2$]) and temperature ($T_a$) have the potential to alter in rice growth and yield. However, little is known about whether $T_a$ warming with elevated [$CO_2$] modify plant architecture. To better understand the vertical profiles of leaf area index (LAI) and the flag leaf morphology of rice grown under elevated $T_a$ and [$CO_2$], we conducted a temperature gradient field chamber (TGC) experiment at Gwangju, Korea. Rice (Oryza sativa L. cv. Dongjin1ho) was grown at two [$CO_2$] [386 (ambient) vs 592 ppmV (elevated)] and three $T_a$ regimes [26.8 ($\approx$ambient), 28.1 and $29.8^{\circ}C$] in six independent field TGCs. While elevated $T_a$ did not alter total LAI, elevated [$CO_2$] tended to reduce (c. 6.6%) the LAI. At a given canopy layer, the LAI was affected neither by elevated [$CO_2$] nor by elevated $T_a$, allocating the largest LAI in the middle part of the canopy. However, the fraction of LAI distributed in a higher and in a lower layer was strongly affected by elevated $T_a$; on average, the LAI distributed in the 75-90 cm (and 45-60 cm) layer of total LAI was 9.4% (and 35.0%), 18.8% (25.9%) and 18.6% (29.2%) in ambient $T_a$, $1.3^{\circ}C$ and $3.0^{\circ}C$ above ambient $T_a$, respectively. Most of the parameters related to flag leaf morphology was negated with elevated [$CO_2$]; there were about 12%, 5%, 7.5%, 15% and 21% decreases in length (L), width (W), L:W ratio, area and mass of the flag leaf, respectively, at elevated [$CO_2$]. However, the negative effect of elevated [$CO_2$] was offset to some extent by $T_a$ warming. All modifications observed were directly or indirectly associated with either stimulated leaf expansion or crop phenology under $T_a$ warming with elevated [$CO_2$]. We conclude that plant architecture and flag leaf morphology of rice can be modified both by $T_a$ warming and elevated [$CO_2$] via altering crop phenology and the extent of leaf expansion.

The Effect of Pressurized Grouting on Pullout Resistance and the Group Effect of Compression Ground Anchor (가압식 압축형 지반앵커의 인발저항력 증대효과 및 군효과 특성)

  • Kim, Tae-Seob;Sim, Bo-Kyoung;Lee, Kou-Sang;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.5-19
    • /
    • 2010
  • The purpose of this study is to figure out the effect of pressurized grouting on the pullout resistance and the group effect of the compression ground anchor by performing pilot-scale chamber tests and field tests. The laboratory tests are carried out for 3-types of soils which are abundant in the Korean peninsular. Experimental results showed that the enlargement of anchor diameters estimated from the cavity expansion theory matches reasonable well with that obtained from experiments. Moreover, the required injection time as a function of the coefficient of permeability of each soil type was proposed. A series of in-situ anchor pullout tests were also performed to experimentally figure out the effect of pressurized grouting on the pullout resistance. Experimental results also showed that the effect of the pressurized grouting is more prominent in a softer ground with smaller SPT-N value in all of the following three aspects: increase in anchor diameter; pullout resistance; and surface roughness. The pressurized grouting effect in comparison with gravitational grouting was found to be almost nil if the SPT-N value is more than 50. Based on experimental results, a new equation to estimate the pullout resistance as a function of the SPT-N value was proposed. And based on in-situ group anchor pullout tests results, a new group effect equation was proposed which might be applicable to decomposed residual soils which are abundant in the Korean peninsular.