• Title/Summary/Keyword: Expanded clay aggregate

Search Result 17, Processing Time 0.019 seconds

An Experimental Study on the Characteristic of Porous Concrete using different Aggregates (골재의 종류에 따른 포러스콘크리트의 특성에 관한 실험적 연구)

  • Jung, Si-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.89-96
    • /
    • 2004
  • Porous concrete is used of various parts by advantage of porous. Example of growing of plant is possible, and dwelling of creature, and filter functions of various contaminant, and decrease of noise, and so on. This research is for porous concretes that were used by four aggregate rubble, refreshing aggregate, expanded clay, orchid stone. This research estimate that physical and mechanical characteristics of fresh concrete and hardened concrete. The purpose of this research is to make environment-friendly porous concrete. This research's conclusion is as following : 1. Porous Concrete's slump was measured 12~14cm with rubble, 12~16cm with refreshing aggregate, 11~13cm with expanded clay, 11~13cm with orchid stone. Weight of aggregate was bigger, slump price appeared by bigger thing. Because placed Porous Concrete is low viscosity and small resistance between aggregate, it estimated that have high workability. 2. Porous Concrete's unit weight was measured 1.71~1.75t/$\textrm{m}^3$ with rubble, 1.58~1.62t/$\textrm{m}^3$ with refreshing aggregate, 1.19~1.20t/$\textrm{m}^3$ with expanded clay, 0.98~1.06t/$\textrm{m}^3$ with orchid stone. Showed aspect such as weight of aggregate. 3. Porous Concrete's compressive strength was measured 76~102kgf/$\textrm{cm}^2$ with rubble, 51~60kgf/$\textrm{cm}^2$ with refreshing aggregate, 30~40kgf/$\textrm{cm}^2$ with expanded clay, 13~16kgf/$\textrm{cm}^2$ with orchid stone. 4. Tendency of tensile strength and bending strength showed generally similarly with compressive strength, but showed low value fewer than 15kgf/$\textrm{cm}^2$ Therefore, wire mesh, reinforcing rod, such as establishment of frame is considered to need in reinforcement about tensility or flexures in case receive tensility or produce product of thin absence form. It concludes by speculating on the consequences of extrapolating the results of study to remodelling the office building being already existence.

An Experimental Study on the Properties of Lightweight Concrete Using Expanded Clay (팽창점토를 사용한 경량콘크리트의 특성에 관한 실험적 연구)

  • Kim, Jong-In;Choi, Young-Wha;Ha, Sang-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.225-232
    • /
    • 2002
  • The purpose of this study is to find the mechanical properties of lightweight concrete using expanded clay. Thus, slump, air content, compressive strength, elastic modulus, tensile strength, length change ratio, unitweight change ratio and absorption of lightweight concrete have been investigated. The conclusions of this study are as follows ; 1. The loss of slump and air content of concrete increased as the expanded clay content increased and the size of coarse aggregate decreased. 2. The compressive strength of concrete using 100% expanded clay of 13, 19mm size at 28 days were respectively 282, $252kgf/cm^2$. 3. The elastic modulus and tensile strength of concrete decreased with increase of expanded clay content. 4. The length change ratio of concrete increased with the larger coarse aggregate size, and decreased with the increase of expanded clay content. 5. The unit weight of concrete decreased with the increase of expanded clay content, and the ratio of that was larger at the early age.

  • PDF

The Properties of Lightweight Concrete Using the Expanded Clay (경량골재 콘크리트의 역학적 특성)

  • 김태형;하상진;최영화;김동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.249-252
    • /
    • 1999
  • Recently, the use of lightweight concrete in architectural structures are increasing. It is considered important to control the quality of lightweight concrete. The purpose of this study is to find mechanical properties of lightweight concrete using the expanded clay. Thus, slump, air content, compressive strength, splitting tensile strength, length change ratio, unitweight change ratio and absorption of lightweight concrete have been investigated. As a result, it was shown that proper expanded clay replaced by coarse aggregate in concrete was considered as a good replacement of lightweight concrete.

  • PDF

Physical and Mechanical Properties of Synthetic Lightweight Aggregate Concrete (인공경량골재(人工輕量骨材) 콘크리트 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.182-193
    • /
    • 1997
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. Therefore, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. The main purpose of the work described in this paper were to establish the physical and mechanical properties of synthetic lightweight aggregate concrete using perlite on fine aggregate and expanded clay, pumice stone on coarse aggregate. The test results of this study are summarized that the water-cement ratio was shown 47% using expanded clay, 56% using pumice stone on coarse aggregate, unit weight was shown $l,622kgf/m^3$ using expanded clay, $l,596kgf/m^3$ using pumice stone on coarse aggregate, and the absorption ratio was shown same as 17%. The compressive strength was shown more than $228kgf/cm^2$, tensile and bending strength was more than $27kgf/cm^2$, $58kgf/cm^2$ at all types, and rebound number with schmidt hammer was increased with increase of compressive strength. The static modulus was $1.12{\times}10^5kgf/cm^2$ using expanded clay, $1.09{\times}10^5kgf/cm^2$ using pumice stone on coarse aggregate, and stress-strain curves were shown that increased with increase of stress, and the strain on the maximum stress was shown identical with $2.0{\times}10^{-3}$, approximately.

  • PDF

Optimum LWA content in concrete based on k-value and physical-mechanical properties

  • Muda, Zakaria Che;Shafigh, Payam;Yousuf, Sumra;Mahyuddin, Norhayati Binti;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.215-225
    • /
    • 2022
  • Thermal comfort and energy conservation are critical issues in the building sector. Energy consumption in the building sector should be reduced whilst enhancing the thermal comfort of occupants. Concrete is the most widely used construction material in buildings. Its thermal conductivity (k-value) has a direct effect on thermal comfort perception. This study aims to find the optimum value of replacing the normal aggregate with lightweight expanded clay aggregate (LECA) under high strengths and low thermal conductivity, density and water absorption. The k-value of the LECA concrete and its physical and mechanical properties have varying correlations. Results indicate that the oven-dry density, compressive strength, splitting tensile strength and k-value of concrete decrease when normal coarse aggregates are replaced with LECA. However, water absorption (initial and final) increases. Thermal conductivity and the physical and mechanical properties have a strong correlation. The statistical optimisation of the experimental data shows that the 39% replacement of normal coarse aggregate by LECA is the optimum value for maximising the compressive and splitting tensile strengths whilst maintaining the k-value, density and water absorption at a minimum.

Physical and Mechanical Properties of Expanded Polystyrene Bead Concrete (팽창 폴리스틸렌 비드 콘크리트의 물리.역학적 특성)

  • 민정기;김성완;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.83-95
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, main purpose of this study was to establish the physical and mechanical properties of lightweight concrete using expanded polystyrene bead on fine aggregate and natural gravel, expanded clay and pumice stone on coarse aggregate. The test rusults of this study are summarized as follows; 1. The water-cement ratio of concrete using pumice stone was larger than that of the concrete using natural gravel and expanded clay. 2. The unit weights of concrete using pumice stone and expanded caly were shown less than 1,000g/$m^3$. 3. The compressive strengths of all types were shown less than 60kg/$cm^2$, tensile and bending strengths were shown less than l3kg/$cm^2$ and 3lkg/$cm^2$$^2$, respectively. 4. The pulse velocity of concrete was shown similar with using natural gravel and pumice stone, and shown the lowest using pumice stone. 5. The dynamic modulus of elasticity of concrete was shown considerably smaller, and shown the lowest using pumice stone. 6. The static modulus of elasticity of concrete using expanded clay and pumice stone were shown considerably smaller, and shown 22% ~29% as compared with the dynamic modulus of elasticity. 7. The stress-strain curves of concrete were shown similar, generally. And the curves were repeated at short intervals increase and decreased irregularly.

  • PDF

An Experimental Study on the Mixing and Mechanical Properties of Artificial Lightweight Aggregate(ALA) Concrete (인공경량골재 콘크리트의 배합과 역학적 성상에 관한 실험적 연구)

  • 김화중;김태섭;전명훈;안상건
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.99-104
    • /
    • 1991
  • It is necessary to generalize the use for structural ALA Concrete in our country, as increasing in the need for the development of ALA and the use of ALA Concrete which is related with the diminution of the self load and foundation section of structure responding to the realistic requirement against the decrease of natural aggregate and the high-rising and large-sizing of structures. This little study, therefore intended to help in the mixing design of concrete by considering the fundamental properties of ALA Concrete used with expanded clay, which is considered by acopting the experimental factors such as unit cement content, water cement ratio and the rate of fine aggregate. By considering the results of this experiment, it has difficulty in getting expected slump with the unit water content of normal concrete because of the large absorption of lightweight aggregate, and because the weight of unit volume and specific gravity ALA Concrete are small it appears that the strength and Elastic Modulus of that are small too and that it is more ductile than normal concrete.

  • PDF

Mix Design Procedure of Structural Concrete Using Artificial Lightweight Aggregates Produced from Bottom Ash and Dredged Soils (바텀애시 및 준설토 기반의 인공 경량골재를 활용한 구조용 콘크리트의 배합설계 절차)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • The objective of this study is to propose a reliable mixing design procedure of concrete using artificial lightweight aggregate produced from expanded bottom ash and dredged soil. Based on test results obtained from 25 mixes, empirical equations to determine water-to-cement ratio, unit cement content, and replacement level of lightweight fine aggregates were formulated with regard to the targeted performance (compressive strength, dry density, initial slump, and air content) of lightweight aggregate concrete. From the proposed equations and absolute volume mixing concept, unit weight of each ingredient was calculated. The proposed mix design procedure limits the fine aggregate-to-total aggregate ratio by considering the replacement level of lightweight fine aggregates, different to previous approach for expanded fly ash and clay-based lightweight aggregate concrete. Thus, it is expected that the proposed procedure is effectively applied for determining the first trial mixing proportions for the designed requirements of concrete.

An Experimental Study on High Strength Lightweight Concrete Using Compound Materials (혼화재를 사용한 고강도 경량콘크리트에 관한 실험적 연구)

  • Kim, Jong-In;Choi, Young-Wha;Kim, Jeong-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 2003
  • This experimental study on high strength lightweight concrete using compound materials has been performed. In which, expanded clay was used as coarse aggregate, and silica fume and fly ash as admixtures varying by 0, 10% and 0, 5, 10, 15, 20% of cement amount respectively were added. Thus, the properties of fresh and hardened concrete have been investigated. The results of this study can be summarized as follows ; Each slump loss of mixtures replaced fly ash has been decreased by increasing replacement rate. The compressive strength have shown 465, 428 and $401kgf/cm^2$ at 30, 40 and 50% of W/B in 28days respectively, all of which have satisfied the criterion $270kgf/cm^2$ of high strength lightweight concrete. The unit volume weight of hardened concrete has been decreased by increasing replacement rate of silica fume and fly ash, values of which have satisfied the criterion $2000kgf/cm^3$of light weight concrete.

  • PDF

Development of Lightweight Polymer Concrete Using Synthetic Lightweight Aggregate and Application for Bottom Draining Structure (인공경량골재를 활용한 경량 폴리머 콘크리트의 개발 및 바닥배수구조물에의 적용)

  • 성찬용;김영익;윤준노
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.846-851
    • /
    • 2003
  • This study was performed to develop the lightweight polymer concrete using expanded clay and perlite to improve workability, durability and chemical resistance for bottom draining structure under severe condition. This paper was composed of two parts. One is to invest the physical and mechanical properties of lightweight polymer concrete using synthetic lightweight aggregate, the other is to the develop products for bottom draining structure. Physical and mechanical test for lightweight polymer concrete was performed unit weight, compressive and flexural strength, chemical resistance, accelerated weathering test, absorption ratio and optimum mix for lightweight polymer concrete was designed. Also, products for bottom draining structures by optimum mix of lightweight polymer concrete was made draining trench of small size.

  • PDF