• Title/Summary/Keyword: Exit temperature

Search Result 410, Processing Time 0.023 seconds

Soot Concentration and Temperature Measurements in Laminar Ethylene Jet Double-concentric Diffusion Flames (동축 이중 에틸렌 확산화염의 매연 농도분포 및 온도 측정)

  • Lee, Gyo-U;Jeong, Jong-Su;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2002
  • Experiments were performed with double-concentric diffusion flame(DDF) in order to investigate the characteristics of soot formation and temperature distributions. The flame size and shape of the DDF are similar to those of the well-known normal co-flow diffusion flame(WF), except the formation of a tiny inverse flame near the central tube exit. A laser light extinction technique was used to measure the soot volume fractions. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple. Soot concentrations along the flame axis of the DDF were higher than those of the NDF. However, the maximum soot volume fraction of the DDF along the periphery of the flame was lower than that of the NDF. It is mainly due to the effect of nitrogen-dilution from the inner air. Measured temperature distribution explains these trends of soot concentration. The temperature along the flame axis was also higher in DDF than that of the NDF. However, the flame temperatures at the flame front of the two flames were almost same regardless of the inner flame. This phenomenon means that the inverse flame inside the DDF did not affect on the flame structure including the temperature and soot concentration, except the region around the flame axis.

The Implementation of high temperature displacement sensors and sensors drive system for Air-preheater (공기예열기를 위한 고온용 변위센서 및 센서드라이브 시스템 구현)

  • Cho, Hyang-Duck;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.453-458
    • /
    • 2011
  • Air preheater uses the waste heat of the gas which burnt from the boiler from the thermal power plant. Air preheater it is established in the exit of the boiler follows in change of temperature combustion gas and the vibration which it follows in thermal expansion and contraction occurs. Air preheater with ruse the gas the seal the place where it includes a gap in the structure which it does, the vibration which it follows in change of temperature fluctuates the displacement of gap, fluctuation of the leakage quantity which occurs from gap there is a possibility of decreasing an effect to system. Part system it will be able to control the interval of gap in order, control mechanism about under establishing the place where it does the gap control actively, measures a gap the displacement sensor for is necessary. Like this displacement sensor the condition must do continuous running from atmosphere of high temperature was demanded all. This paper investigates the implementation instance of hazard existing which implement the high temperature displacement sensor, it analyzes, produces the result which it examines a model, it was a presentation. These results with the fact that it will contribute in the research for the implementation and a localization of the high temperature displacement sensor and advanced air preheater.

  • PDF

Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC) (유기 플래쉬 사이클(OFC)의 열역학적 성능 특성)

  • Kim, Kyounghoon;Jung, Youngguan;Park, Sanghee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.91-97
    • /
    • 2013
  • Recently a novel cycle named organic flash cycle (OFC) has been proposed which has improved potential for power generation from low-temperature heat sources. This study carries out thermodynamic performance analysis of OFC using various working fluids for recovery of low-grade heat sources in the form of sensible energy. Special attention is focused on the optimum flash temperature at which the exergy efficiency has the maximum value. Under the optimal conditions with respect to the flash temperature, the thermodynamic performances of important system variables including mass flow ratio, separation ratio, heat addition, specific volume flow rate at turbine exit, and exergy efficiency are thoroughly investigated. Results show that the exergy efficiency has a peak value with respect to the flash temperature and the optimum working fluid which shows the best exergy efficiency varies with the operating conditions.

Design of Heat and Fluid Flow in Cold Container Using CFD Simulation (CFD 시뮬레이션을 이용한 냉장컨테이너의 열유동 설계)

  • Yun, Hong-Sun;Kwon, Jin-Kyung;Jeong, Hoon;Lee, Hyun-Dong;Kim, Young-Keun
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.396-403
    • /
    • 2008
  • Because thermal non-uniformity of transported agricultural products is mainly affected by cooling air flow pattern in the cold transport equipment, the analysis and control of flowfield is key to optimization of cold transport equipment. The objectives of this study were to estimate the effects of geometric and operating parameters of cold container on the air flow and heat transfer, and find the optimum design parameters for the low temperature level and its uniformity in given cold container with CFD simulations. Existences of ducts, gaps between pallets and geometries of exit as geometric parameters and fan blowing velocity as operating parameter were investigated. CFD simulations were carried out with the FLUENT 6.2 code. The result showed that optimum design condition was bulk loading with no duct, wall exit and 8.0 m/s of fan blowing velocity.

Heat Transfer Characteristics under Recirculation zone of Ramjet Combustor (재순환 영역이 램제트 연소실에서의 열전달 특성에 미치는 영향)

  • Lee, Keon-Woo;Oh, Min-Keun;Ham, Hee-Chul;Hwang, Ki-Young;Cho, Hyung-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.9-17
    • /
    • 2007
  • This experimental study has been conducted to investigate the effect of the recirculation zone on the multi-slot film cooling in the ramjet combustor. The recirculation zone which is generated by the protrusion tip on the entrance of the coolant flow path affects on the first slot. Velocity fields, dimensionless temperature fields and adiabatic film cooling effectiveness on the downstream wall of the slot exit are measured. The results show that the film cooling performance is rapidly decreased after the slot exit by shear layer and high turbulence intensity between separated flows and coolant flows.

Study of the Slot Film Cooling under Ramjet Combustor with Recirculation Zone (재순환 영역이 존재하는 램제트 연소실 슬롯 막냉각 연구)

  • Oh Min-Geun;Park Kwang-Hoon;Byun Hae-Won;Yu Man-Sun;Cho Hyung-Hee;Ham Hee-Cheol;Bae Joo-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.59-63
    • /
    • 2005
  • The experimental study has been conducted to investigate the effect of the recirculation zone on the multi-slot film cooling in the ramjet combustor. The recirculation zone which is generated by the protrusion tip on the entrance of the coolant flow path affects on the first slot. Velocity fields, dimensionless temperature fields and adiabatic film cooling effectiveness on the downstream wall of the slot exit are measured. The results show that the film cooling performance is rapidly decreased after the slot exit by the share layer and high turbulence intensity between separated flows and coolant flows.

  • PDF

The Gasoline Spray Characteristics of Tapered Nozzle for a Swirl Injector (경사노즐 선회분사기의 가솔린 분무 특성)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • The swirl spray for direct-injection spark-ignition (DISI) engines was investigated using a nozzle whose exit surface shape was cut with a certain tapered angle. The reason for the change in spray's characteristics at various tapered angles was explained by the data correlating the taper and flow angles. The spray tended to shift its characteristics from the symmetric to asymmetric when the tapered angle was increased; furthermore, the spray penetration and spray cone angle were also increased. When the tapered angle was greater than the $90^{\circ}$ minus flow angle, an opened hollow cone spray was formed because of the fuel impingement against the tapered surface area of the nozzle exit. This behavior indicates that the reduction in the air pressure difference between the inner and outer spray of the spray can be achieved. This behavior also promises the potential use of the tapered nozzle for the case where the independence of the spray performance from atmospheric pressure and fuel temperature is desired.

  • PDF

A Study on The Flow Characteristics according to Changes of Rod Shape on Impinging Jet (충돌 제트에서 Rod 형상 변화에 따른 주변 유동 특성연구)

  • Son Seung-Woo;Lee Sang-Bum;;Song Min-Geun;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.525-528
    • /
    • 2002
  • The objective of this study is to investigate characteristics of flow by the Rod shape and the choice of the turbulent intensity enhancement section. The Rod was setup vertically to the way of a nozzle exit flow and nozzle diameter is 17mm. Rod height is 5mm and its shapes are square, triangle, and circle. Characteristics of fluid such as velocity vector distribution, kinetic energy, turbulent intensity, and etc. were visualized, observed, and considered at 3 kinds of Re No. such as 2000, 3000, and 4000. The characteristics of flow field were investigated in each case of the distance rate from the nozzle exit to impinging plate(H/B=8, 10). The temperature of water is $20^{\circ}E$ and the measurement region divided by 3 sections(I, II, III). The nozzle diameter is 17mm. As the experimental result by PIV measurement, scale of the vector profile showed a tendency to an unbalance parabola distribution as increasing of the Re No. When the impinging plates such as square, triangle, and circle shape are installed respectively in front of the flow accelerated, rod shape of the highest velocity vector is circle shape and rod shape of the highest turbulent Intensity is square shape.

  • PDF

A Study on the Model Experiment for Smoke Flow in Road Tunnel Fire (도로터널 화재발생시 연기유동에 관한 축소모형실험 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kang, Se-Gu;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2004
  • In this study, smoke movement in tunnel fire with natural and longitudinal ventilation systems has been investigated. Reduced-scale experiments were carried out under the Froude scaling using 14.55kW fire source with a wick and experimental data is obtained with 1/18 model tunnel test. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gas was measured at emergency exit point. The results show that refuge time for 225m intervals of emergency exit in case of natural ventilation systems is 256 seconds and critical velocity for sufficient back-layer prevention is 2.8m/s for fire strength of 20MW.

  • PDF

Characteristics of spatial distribution of cold cathode type large aperture electron beam (냉음극형 대면적 전자빔의 공간적 분포 특성)

  • Woo, S.H.;Abroyan, M.;Cho, C.H.;Kim, G.H.;Lee, H.S.;Rim, G.H.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF