• Title/Summary/Keyword: Exhaustive search method

Search Result 74, Processing Time 0.03 seconds

Branch-and-Bound Algorithm for Division of Perfect Nine Dart Combinations (퍼펙트 9 다트 조합의 나눗셈 분기한정 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • This paper researched a study to find a combination of acquisition scores for 9 dart throws, which is the minimum number of dart tactile throws in 501 point dart games. The maximum score that can be obtained by throwing once in a dart game is 60 points, which can end the perfect dart game with 60 points eight times according to 60×8+21×1=501, and if you earn 21 points once, you can finish the game with 9 throws. This is called 9-dart finish. As such, only 18 and 14 studies on the combination of scores that can obtain 501 points with 9 throws are known, and no studies have been conducted applying the exhaustive search algorithm. This paper proposed a division branch-and-bound algorithm as a method of simplifying the O(2n) exponential time performance complexity of the typical branch-and-bound method of a exhaustive search method, to polynomial time complexity. The proposed method limited the level to 8, jumped to a quotient level of 501/60, and backtracked to explore only possible score combinations in the previous level. The possible score combinations of the nine perfect games found with the proposed algorithm were 90(101 cases).

A Heuristic for Dual Mode Routing with Vehicle and Drone

  • Min, Yun-Hong;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.79-84
    • /
    • 2016
  • In this paper we consider the problem of finding the triplet (S,${\pi}$,f), where $S{\subseteq}V$, ${\pi}$ is a sequence of nodes in S and $f:V{\backslash}S{\rightarrow}S$ for a given complete graph G=(V,E). In particular, there exist two costs, $c^V_{uv}$ and $c^D_{uv}$ for $(u,v){\in}E$, and the cost of triplet (S,${\pi}$,f) is defined as $\sum_{i=1}^{{\mid}S{\mid}}c^V_{{\pi}(i){\pi}(i+1)}+2$ ${\sum_{u{\in}V{\backslash}S}c^D_{uf(u)}$. This problem is motivated by the integrated routing of the vehicle and drone for urban delivery services. Since a well-known NP-complete TSP (Traveling Salesman Problem) is a special case of our problem, we cannot expect to have any polynomial-time algorithm unless P=NP. Furthermore, for practical purposes, we may not rely on time-exhaustive enumeration method such as branch-and-bound and branch-and-cut. This paper suggests the simple heuristic which is motivated by the MST (minimum spanning tree)-based approximation algorithm and neighborhood search heuristic for TSP.

The Extended k-opt Algorithm for Traveling Salesman Problem (외판원 문제의 확장된 k-opt 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.155-165
    • /
    • 2012
  • This paper suggests traveling salesman problem algorithm that have been unsolved problem with NP-Hard. The proposed algorithm is a heuristic with edge-swap method. The classical method finds the initial solution starts with first node and visits to mostly adjacent nodes then decides the traveling path. This paper selects minimum weight edge for each nodes, then perform Min-Min method that start from minimum weight edge among the selected edges and Min-Max method that starts from maximum weight edges among it. Then we decide tie initial solution to minimum path length between Min-Min and Min-Max method. To get the final optimal solution, we apply previous two-opt to initial solution. Also, we suggest extended 3-opt and 4-opt additionally. For the 7 actual experimental data, this algorithm can be get the optimal solutions of state-of-the-art with fast and correct.

Relay Selection Based on Rank-One Decomposition of MSE Matrix in Multi-Relay Networks

  • Bae, Young-Taek;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.9-11
    • /
    • 2010
  • Multiple-input multiple-output (MIMO) systems assisted by multi-relays with single antenna are considered. Signal transmission consists of two hops. In the first hop, the source node broadcasts the vector symbols to all relays, then all relays forward the received signals multiplied by each power gain to the destination simultaneously. Unlike the case of full cooperation between relays such as single relay with multiple antennas, in our case there is no closed form solution for optimal relay power gain with respect to minimum mean square error (MMSE). Thus we propose an alternative approach in which we use an approximation of the cost function based on rank-one matrix decomposition. As a cost function, we choose the trace of MSE matrix. We give several simulation results to validate that our proposed method obtains a negligible performance loss compared to optimal solution obtained by exhaustive search.

  • PDF

Optimization of Frame Structures with Natural Frequency Constraints (고유진동수 제약조건을 고려한 프레임 구조물의 최적화)

  • Kim, Bong-Ik;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.109-113
    • /
    • 2010
  • We present the minimum weight optimum design of cross sectional for frame structures subject to natural frequency. The optimum design in this paper employ discrete and continuous design variables and Genetic Algorithms. In this paper, Genetic Algorithms is used in optimization process, and be used the method of Elitism and penalty parameters in order to improved fitness in the reproduction process. For 1-Bay 2-Story frame structure, in examples, continuous and discrete design variables are used, and W-section (No.1~No.64), from AISC, discrete data are used in discrete optimization. In this case, Exhaustive search are used for finding global optimum. Continuous variables are used for 1-Bay 7-Story frame structure. Two typical frame structure optimization examples are employed to demonstrate the availability of Genetic Algorithms for solving minimum weight optimum of frame structures with fundamental and multi frequency.

Layer Assignment of Functional Chip Blocks for 3-D Hybrid IC Planning (3차원 Hybrid IC 배치를 위한 기둥첩 블록의 층할당)

  • 이평한;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.1068-1073
    • /
    • 1987
  • Traditional circuit partitioning algorithm using the cluster development method, which is suitable for such applications as single chip floor planning or multiple layer PCB system placement, where the clusters are formed so that inter-cluster nets are localized within the I/O connector pins, may not be appropriate for the functiona block placement in truly 3-D electronic modules. 3-D hybrid IC is one such example where the inter-layer routing as well as the intra-layer routing can be maximally incorporated to reduce the overall circuit size, cooling requirements and to improve the speed performance. In this paper, we propose a new algorithm called MBE(Minimum Box Embedding) for the layer assignment of each functional block in 3-D hybrid IC design. The sequence of MBE is as follows` i) force-directed relaxation in 3-D space, ii) exhaustive search for the optimal orientation of the slicing plane and iii) layer assignment. The algorithm is first explaines for a 2-D reduced problem, and then extended for 3-D applications. An example result for a circuit consisting of 80 blocks has been shown.

  • PDF

Multi-Channel Speech Enhancement Algorithm Using DOA-based Learning Rate Control (DOA 기반 학습률 조절을 이용한 다채널 음성개선 알고리즘)

  • Kim, Su-Hwan;Lee, Young-Jae;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.91-98
    • /
    • 2011
  • In this paper, a multi-channel speech enhancement method using the linearly constrained minimum variance (LCMV) algorithm and a variable learning rate control is proposed. To control the learning rate for adaptive filters of the LCMV algorithm, the direction of arrival (DOA) is measured for each short-time input signal and the likelihood function of the target speech presence is estimated to control the filter learning rate. Using the likelihood measure, the learning rate is increased during the pure noise interval and decreased during the target speech interval. To optimize the parameter of the mapping function between the likelihood value and the corresponding learning rate, an exhaustive search is performed using the Bark's scale distortion (BSD) as the performance index. Experimental results show that the proposed algorithm outperforms the conventional LCMV with fixed learning rate in the BSD by around 1.5 dB.

  • PDF

Effect of Outriggers on Differential Column Shortening in Tall Buildings

  • Kim, Han-Soo
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • Special consideration should be given to differential column shortening during the design and construction of a tall building to mitigate the adverse effects caused by such shortening. The effects of the outrigger - which is conventionally used to increase the lateral stiffness of a tall building - on the differential shortening are investigated in this study. Three analysis models, a constant-section, constant-stress, and general model, are prepared, and the differential shortenings of these models with and without the outrigger are compared. The effects of connection time, sectional area, and location of the outrigger on the differential shortening are studied. The sectional area of the outrigger shows a non-linear relation in reducing the maximum differential shortening. The optimum locations of the single and dual outriggers are investigated by an exhaustive search method, and it is confirmed that a global optimum location exists. This study shows that the outrigger can be utilized to reduce the differential shortening between the interior core wall and the perimeter columns as well as to reduce the lateral displacements due to wind or earthquake loads.

Differential Fault Analysis for Round-Reduced AES by Fault Injection

  • Park, Jea-Hoon;Moon, Sang-Jae;Choi, Doo-Ho;Kang, You-Sung;Ha, Jae-Cheol
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.434-442
    • /
    • 2011
  • This paper presents a practical differential fault analysis method for the faulty Advanced Encryption Standard (AES) with a reduced round by means of a semi-invasive fault injection. To verify our proposal, we implement the AES software on the ATmega128 microcontroller as recommended in the standard document FIPS 197. We reduce the number of rounds using a laser beam injection in the experiment. To deduce the initial round key, we perform an exhaustive search for possible key bytes associated with faulty ciphertexts. Based on the simulation result, our proposal extracts the AES 128-bit secret key in less than 10 hours with 10 pairs of plaintext and faulty ciphertext.

Performance Analysis and Power Allocation for NOMA-assisted Cloud Radio Access Network

  • Xu, Fangcheng;Yu, Xiangbin;Xu, Weiye;Cai, Jiali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1174-1192
    • /
    • 2021
  • With the assistance of non-orthogonal multiple access (NOMA), the spectrum efficiency and the number of users in cloud radio access network (CRAN) can be greatly improved. In this paper, the system performance of NOMA-assisted CRAN is investigated. Specially, the outage probability (OP) and ergodic sum rate (ESR), are derived for performance evaluation of the system, respectively. Based on this, by minimizing the OP of the system, a suboptimal power allocation (PA) scheme with closed-form PA coefficients is proposed. Numerical simulations validate the accuracy of the theoretical results, where the derived OP has more accuracy than the existing one. Moreover, the developed PA scheme has superior performance over the conventional fixed PA scheme but has smaller performance loss than the optimal PA scheme using the exhaustive search method.