• 제목/요약/키워드: Exhaust ventilation system

검색결과 185건 처리시간 0.032초

무창 분만ㆍ자돈사내에서 환기시스템별 혹한기 환경 조사 (Environmental Survey to a Ventilation System on the Enclosed Farrowing-nursery Pig House in Winter)

  • 유용희;송준익;정종원;김태일;최희철;양창범;이영윤
    • 한국축산시설환경학회지
    • /
    • 제10권1호
    • /
    • pp.23-28
    • /
    • 2004
  • 본 연구는 국내의 있는 무창 분만ㆍ자돈사에 대하여 환기시스템 정립의 기초자료를 수집하고자 수행하였다. 측벽상단입기 지붕굴뚝배기, 천공천장입기 지붕굴뚝배기, 측벽덕트입기 지붕굴뚝배기, 측벽덕트입기 측벽배기의 4종류 무창분만ㆍ자돈사 환기 형태에 대하여 조사하였다. 겨울철 돈사 내 온도, 습도, 공기유속, 암모니아가스 농도의 환경상태를 조사하였다. 겨울철 각 환기 형태별 돈사 내 온도는 환기형태에 따른 온도의 차이는 없었다. 공기유속은 측벽덕트입기 측벽배기가 다른 환기 형태보다 높은 공기 유속이 있었다. 돈사 공간내 각 환기형태별 공기유동은 측벽덕트입기 지붕굴뚝배기, 측벽덕트입기 측벽배기 환기형태가 비교적 다른 환기 시스템에 비교하여 원활한 공기유동이 있는 것으로 나타났다. 암모니아(NH$_3$) 농도도 다른 환기형태보다 측벽덕트입기 측벽배기가 낮은 경향을 보였다. 따라서, 측벽덕트입기 지붕굴뚝배기, 측벽덕트입기 측벽배기가 국내의 무창 분만ㆍ자돈사 환기방식에 적용할 수 있을 것으로 판단되었다.

  • PDF

굴착중인 장대터널내 최적의 환기시스템에 대한 연구 (The Study on Optimum Ventilation System during Long Tunnel Construction)

  • 오병화;임한욱
    • 화약ㆍ발파
    • /
    • 제24권2호
    • /
    • pp.9-22
    • /
    • 2006
  • 길이가 대단히 짧은 터널을 제외하고는 터널을 시공하는 경우 일반적으로 인위적인 환기시스템이 필요하다. 특히 장대터널의 경우 굴착 진행에 따라 적절한 환기시스템을 조합해서 사용하는 것이 효과적이다. 터널 연장이 4,580m인 능동터널은 본래 송기식을 사용하는 것으로 설계를 했지만, 굴착이 진행됨에 따라 송기식만으로 환기하는 데에는 한계가 예상되어 별도의 방식 검토를 수행하였다. 굴착중 터널의 소요환기량을 산정하고 이 소요환기량과 선택가능한 여러 가지 경우의 환기조합방식을 사례볕로 구성한 뒤 환기량과 유동성을 해석하고 비교함으로써 경제적으로도 우수한 최적의 환기조합안을 도출하였다. 환기시스템을 결정하기 위하여 각 환기시스템에 대한 경제적 효율성 평가를 수행하였다.

지하철 화재시 본선터널 환기시스템에 따른 열 및 연기배출특성 (A Study of Heat St Smoke Evacuation Characteristics by the Changing of Operational Method of Tunnel Fan Shaft Ventilation System for Fire on Subway Train Vehicle)

  • 이동호;유지오
    • 한국화재소방학회논문지
    • /
    • 제17권2호
    • /
    • pp.62-69
    • /
    • 2003
  • 국내의 경우, 지하철 승강장 제연설비는 전용설비로 구축되어 있지 않고 화재발생시 승강장환기설비 및 본선터널부의 환기설비를 제연모드로 절환하여 운영되고 있다. 제연효과는 이러한 까닭으로 환기설비의 위치, 용량 및 급배기방식에 종속된다. 따라서 본 연구는 승강장에 정차한 열차에서 화재가 발생하는 경우를 대상으로 승객의 대피 소요시간을 산출하고 지하철환경해석 프로그램인 SES(Subway Environmental Simulation)를 사용하여 터널부 환기설비의 제연절환운전으로 승강장부에 형성되는 기류의 해석 및 FDS(Fire dynamics Simulator)을 이용하여 화재해석을 제연방식별로 수행한다. 얻어진 가시도 및 승강장 의 온도로부터 본선 터널부 제연모드별 특성을 규명한다.

오존 정화시스템을 이용한 축사내 공기정화 효과 (Germicidal Effect of Ozone Cleaning System for Pigpens Air)

  • 원승호;김영권
    • 한국태양에너지학회 논문집
    • /
    • 제30권1호
    • /
    • pp.13-18
    • /
    • 2010
  • This research investigated the exhaust gas purification system of gaseous ozone for pigpens. This system is applied to exhaust the gas outside after purification with ozone. This is very effective for purification and simple. And because this is not set in the pigpens, this system is not influence of pollution gas. This is effected to extend the life time of this system and this system is applied for non-window pigpens which does not need the ventilation.

실험계획법에 의한 수직샤프트내 압력분포에 영향을 미치는 인자간 상관관계 분석 (Correlation Analysis of Parameters affecting Pressure Distributions in Vertical Shafts by Design of Experiments)

  • 한화택;신철용
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.883-888
    • /
    • 2008
  • Various effluents generated in cooking processes contribute a great deal to indoor air pollution among many other indoor pollutants such as dusts from outdoor and carbon dioxide from human body. Kitchen exhaust hoods are not believed to exhaust indoor contaminants properly in many cases, while generating too much noise. Instead of focusing on individual products of kitchen hoods, we should address the problem by attacking the ventilation system as a whole including vertical shafts and building air-tightness. In this study, it is intended to investigate the pressure distribution along the vertical shaft depending on various system parameters, such as shaft size, concurrent hood usage rate, roof fan, inlet pressure loss, and outdoor temperature. The maximum static pressure in the vertical shaft has been obtained using the method of design of experiments and analyzed by the analysis of variance. The results can be used for the design of kitchen exhaust systems by analyzing the pressure distributions in vertical shafts.

  • PDF

중소기업 도금공정에서의 6가 크롬 폭로에 관한 연구 (A Study on Worker Exposure to Hexavalent Chromium in Plating 0peration)

  • 정희경;백남원
    • 한국산업보건학회지
    • /
    • 제3권2호
    • /
    • pp.152-165
    • /
    • 1993
  • This study was performed at eleven small-sized plating factories located in Seoul, Incheon, Ansan, and Taejeon from July 21 to October 6, 1992. The major objectives of this study were to evaluate worker exposure to hexavalent chromium and local exhaust ventilation (L.E.V.) systems at the chromium plating operations. The most suitable L.E.V. systems for chromium plating tanks were designed as examples for recommendation to the industry. The results are summarized as follows. The range of chromium plating operations investigated included decorative, hard, and black chromium plating on several kinds of parts. Most of plating tanks were not equipped with proper control methods against emission of hexavalent chromium mists and workers were not wearing appropriate personal protectives. The ariborne hexavalent chromium concentrations showed an approximate lognormal distribution. The geometric means of both personal and area samples were within the Korean and ACGIH standards, $50{\mu}g/m^3$. However, in comparison with the NIOSH criterion, $1{\mu}g/m^3$, the geometric means of personal samples at two factories and the geometric means of area samples at two factories exceeded it. The geometric means of personal and area samples of high exposure groups (above the NIOSH criterion) were 7 and 27 times higher than those of low exposure groups (below the NIOSH criterion), respectively. The L.E.V. systems of high exposure groups were improperly designed, and the factory with the highest exposure level had no L.E.V. systems at all on chemical etching process. Whereas at factories of low exposure groups, mist control methods such as mist suppressants, tank cover, and/or auxillary L.E.V. systems were added to L.E.V systems. The evaluation of L.E.V. systems showed that there was no chromium plating operation satisfying the ACGIH criteria for capture velocity, slot velocity, and exhaust rate simultaneously. To increase performance of L.E.V. systems, it must be designed to minimize the impact of boundary layer separation. Push-pull ventilation hood and downward plenum ventilation hood were suggested for the Korean industry.

  • PDF

건물 옥상외기와 실내배기를 활용한 풍력발전시스템 적용 연구 (A Study on the Application of a Wind Power Generation System Using Outdoor Air on the Rooftop and Indoor Ventilation)

  • 이용호;박진철;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.72-80
    • /
    • 2014
  • This study proposed a wind power generation system utilizing outdoor air on the rooftop and indoor ventilation, which would increase according to the building height, as a way to help to save energy consumption in a building by using wind power energy of the new renewable energy sources. The study measured the distribution of air currents and power generation according to the usage factor of exhaust pipes in the kitchen and bathroom and identified the elements to consider when applying a wind power generation system to buildings in order to use outdoor air on the rooftop increasing according to the height and the indoor ventilation produced in the facility vertical shafts inside the buildings by installing a wind power generation system on the rooftop. (1) The study measured the ventilation velocity of the kitchen hood and bathroom ventilation fan by changing the zone areas by the households according to the usage factor of [${\alpha}$]=33~100%. As a result, the kitchen ventilation pipe generated the ventilation wind of 3.0m/s or more at the usage factor of [${\alpha}$] 66% or higher, and the bathroom ventilation pipe generated ventilation velocity lower than 3.0m/s, the blade velocity of the wind power generator, even after the usage factor rose to [${\alpha}$]=100%. (2) As the old bathroom ventilation pipe generated the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, even with the rising usage factor [${\alpha}$], the application of an outdoor air induction module increased the ventilation velocity by 2.9m/s at the usage factor of [${\alpha}$]=33%, 3.8m/s at the usage factor of [${\alpha}$]=66%, and 3.6m/s at the usage factor of [${\alpha}$]=100%. Thus the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, or higher was secured. (3) The findings prove that the applicability of a wind power generation system using outdoor air on the rooftop and indoor ventilation is excellent, which raises a need for various efforts to increase the possibility of its commercialization such as securing its structural stability according to momentary gusts on the rooftop and typhoons in summer and making the structure light to react to the wind directions of outdoor air on the rooftop according to the seasons.

창호일체형 환기시스템 및 중앙냉방시스템 연계 운영에 대한 수치해석적 연구 (Numerical Analysis on the Coupled Operation of Ventilation Window System and Central Cooling System)

  • 박동윤;장성주
    • 한국대기환경학회지
    • /
    • 제31권4호
    • /
    • pp.385-395
    • /
    • 2015
  • This study evaluated indoor environmental characteristics in an office room equipped both with ventilation window system and central cooling system. Fresh air is supplied only by the central cooling system whereas indoor air is discharged outside through both ceiling diffuser and a ventilation window system. Numerical study is conducted by changing the volumetric flow rates of exhaust ports of each system. For estimating the performance of this coupled system, $CO_2$ concentration and Predicted Mean Vote (PMV) were calculated using Computational Fluid Dynamics (CFD) simulation. The more the ceiling diffuser exhausts indoor air, the more the $CO_2$ concentration decreases. However, when the ventilation window system exhausts more indoor air, thermal comfort level gets improved in the office room with cooling system. Therefore, when the ventilation window system is operated, the coupled operation with central cooling system should be considered for enhancing indoor air quality and thermal comfort, together.

바닥의 위치가 Vortex Vent의 배기성능에 미치는 영향 (Effect of the Floor on the Ventilation Performance of the Vortex Vent)

  • 이진원;임영복
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.154-158
    • /
    • 2009
  • The vortex ventilation system (VV) which uses a rotating finned swirler installed coaxially with the exhaust duct is a very effective local ventilator. VV can enhance the capture depth by a factor of 3-5 compared to the conventional exhaust hood, in the absence of any solid walls nearby. In real situations there may exist ceiling, side wall and floor, all of which can affect the flow field and suction performance by way of the no-slip condition on the walls. 3D CFD simulation was performed in order to see the effect of the floor on the capture performance of the VV. The presence of floor reduced suction flow velocity, and increased the critical rotational speed which is the rotational speed required for stable vortex formation. Flow velocity profile along the axis could be well approximated by a universal functional form when the distance from the exhaust inlet is non-dimensionalized by the distance to the floor. Capture depth, define by the distance from the exhaust inlet to a point of velocity decreased to 10% of that at the inlet, is reduced by about 10% when the floor distance is 6 times the exhaust hood diameter.

  • PDF

도로터널용 전기집진시스템 개발 (Development of Road Tunnel Ventilation System with Electrostatic Precipitator)

  • 김종률;원종웅
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF