• Title/Summary/Keyword: Exhaust pollutants

Search Result 161, Processing Time 0.027 seconds

Recent Trends of Vessel-Source Pollution (선박 기인 오염물의 처리동향 및 대책)

  • Park, Sang-Ho;Kim, In-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.97-104
    • /
    • 2006
  • Though stringent guidelines are in place to protect the harbor environment, pollution from ships, from the ports terminals. Discharge from the ballast tanks of ships, though illegal, does occur. Such vessels, arriving from distant ports of call, can introduce exotic species of plants and animals, causing disruption of the local food web. Discharges rich in nitrogen can generate the rapid growth of plankton, eventually leading to a condition known as red tide that is lethal to some coastal organisms. In addition to the harbor's negative effects on marine organisms, the diesel engines of the ships and the trucks that haul cargo to and from the ports release large volumes of diesel exhaust into the atmosphere. IMO(International Maritime Organization) is strongly proceeding with adoption of a new maritime environment convention and coming into effect for regulation enhancement about the pollutants which are happened in a ship recently. Study about the conventions that our country currently comes into effect, and there is during forwarding and correspondence must be performed effectively. In this paper, International convention on the control of harmful Anti-Fouling system on ship, Ballast water management, Prevention of air pollution from ships, treat a main pending problem in ocean related environmental regulation convention.

  • PDF

A Study on the Effect of Sulfur Content in Fuel Oil on the Emission of Air Pollutants According to Operating Conditions of Small Ship Engines (선박용 소형 엔진에서 연료유 내 황 함유량이 운전 조건에 따라 대기오염물질 배출에 미치는 영향에 관한 연구)

  • Lee, Kyeong-yeol;Rho, Beom-seok;Lee, Won-Ju;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.834-840
    • /
    • 2018
  • In this study, the characteristics of air pollutant emissions from ships' engines have been investigated by conducting E2 and E3 cycle mode tests. A engine 360Ps (Doosan L126TIH engine) and 400kW dynamometer Horiba-Schenck were utilized for engine tests. The FTIR analyzer and SPC were used to measure exhaust gas (NOx, SOx etc.) and PM (particulate matter), respectively. The results showed that the emissions of THC and CO produced from engine were increased with the increase of sulfur content in fuel oils at E2 and E3 cycle modes. The kinetic viscosity of the fuel increased as the sulfur content of the fuel increased, thereby the specific fuel oil consumption (SFC) of the engine improved. This result is considered to be due to improved combustion conditions due to increased average diameters of sprayed particles and due to increased kinetic viscosity under constant fuel injection pressure in this study. In the case of NOx emission, this study showed no significant change in amount of sulfur content.

A Study for Developing an Operating Mode-Based Emission Model for Korea (한국형 운행 모드 기반 배출량 산정 모형 개발에 관한 연구)

  • HU, Hyejung;FREY, Christopher;YOON, Chunjoo;YANG, Choongheon;KIM, Jinkook
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.180-190
    • /
    • 2016
  • Atmospheric pollutants such as Nitrogen Oxides(NOx), Carbon Monoxide(CO), Carbon Dioxide($CO_2$), Particulate Matter(PM) and Hydrocarbons(HC) come from vehicle exhaust gases. Emission curves based on average travel speeds have been employed for estimating on-road emissions as well as evaluating environmental impacts of transportation plans and policies in Korea. Recently, there is a growing interest in estimation methods of vehicle emissions considering relationship between vehicle dynamic driving characteristics and emissions, and incorporating such emission estimators into traffic simulation models. MOVES Lite, a simplified version of MOVES, is one of the estimation methods. In this study, the authors performed a study to develop an adaptable version of MOVES Lite for Korea, called MOVES Lite-K. Vehicle types, driving characteristics, emission rates, and emission standards of Korea were reflected in MOVES Lite-K. The characteristics of emission calculation of MOVES Lite-K and NIER emission curves were compared and the adaptability of MOVES Lite-K were examined.

A Study on the Life-Cycle Assessment and the Case Study for the Environmental Management (환경경영을 위한 전과정평가(LCA)의 고찰 및 사례 연구)

  • Lim, Jae-Hwa;Lee, Seok-Jun
    • Korean Business Review
    • /
    • v.18 no.1
    • /
    • pp.59-79
    • /
    • 2005
  • recently, world is progressing large quantity consumption with continuous Innovation and economic growth and pollution is accelerated at these process. Increase of industry activity and service that is point of corporation activity is discharging environmental pollutants at whole process to manufacture of end product and exhaust process from acquisition of raw material for accompanied product production hereupon. At the same time, being promoting resources consumption by that use much raw material, As a result, is becoming obstacle factors in sustainable development. So, corporation's responsibility for environmental protection is emphasized. Corporation which must prepare in green round or environmental problems should consider environmental effects that is happened over whole life of products that include waste treatment after raw material acquisition and use as well as selling end product simply. A Life Cycle Assessment techniques is normalized and standardized in International Standard Organization for technical committee 207(TC 207) world widely, and effort to apply in corporation's activity because mastering LCA techniques in domestic several corporations is undergone actively. Coming into effect of Kyoto's Protocol and International Organization for Standard 14000 series revision are presenting new survival principle in competition between country or corporation. LCA technique may become very useful means to corporation which wish to attempt environment management in real condition that awareness for environment is important. Also, An LCA to each product is going to cause big effects in corporation's whole image as well as competitive power raising for single product. Therefore, this research wishes to examine some instances for the future competitive product development at the estimation of environmental friendliness using LCA techniques and more theoretical considerations of the LCA techniques that can dominate corporation's fate.

  • PDF

A Study on the Application of Domestic ferry to a Battery Propulsion Ship connected with Photovoltaic System (태양광 발전시스템이 연계된 배터리 전기추진선박의 국내 유람선 적용에 관한 연구)

  • Hwang, Jun-Young;Jeon, Cheol-Hwan;Jeon, Hyeon-Min;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.945-952
    • /
    • 2019
  • The International Maritime Organization (IMO) adopted the International Convention on the Control of Ships' Air Pollutants and Discharge as it became interested in environmental issues such as global warming and air pollution. In addition, a special bill on the improvement of air quality, including in port areas, has recently been enacted in Korea to reduce the amount of fine dust generated. As part of such fine dust reduction measures, feasibility studies have been underway on converting diesel engines into battery electric propulsion systems that do not cause fine dust and emissions. Since the battery electric propulsion system can easily utilize renewable energy sources, and does not generate exhaust gas due to combustion of fuel, small coastal ferries with battery electric propulsion systems that use renewable energy have been operating in Europe and the U.S. for several years. However, they have not been introduced in Korea. Therefore, in this study, we selected small coastal ferries in Korea as target ferries, and performed simulations to study the applicability of electric propulsion with batteries linked to solar power systems. Based on the results, we want to confirm the applicability of battery electric propulsion.

Evaluation of Decomposition Characteristics of Organochlorine Pesticides Using Thermal Method (열적방법을 활용한 유기염소계 폐농약의 분해 특성 평가)

  • Kwon, Eun-Hye;Yoon, Young-Sam;Bea, Ji-Su;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.744-753
    • /
    • 2018
  • The Stockholm Convention, which was adopted in Sweden in 2001 to protect human health and the environment, includes regulations for Persistent Organic Pollutant Rotors such as toxic and bioaccumulatives. Currently, there are 28 types of materials. This prohibits and limits the production, use, and manufacture of products. Korea is a member of the Convention, and it is necessary to prepare management and treatment plans to address the POP trends. Thus, we experimentally investigate whether the environmentally stable incineration is achieved when the sample is thermally treated using the Lab-scale (1 kg/hr). The target samples is pesticides in liquid phase and solid phase. In this study, organic chlorinated pesticides and their thermal characteristics were analyzed. We calculated the theoretical air volume based on the element analysis results. Because the interior of the reactor is small, more than 10 times of the air ratio was injected. The retention time was set to at least 4 seconds using a margin. The incineration temperature was $850^{\circ}C$ and $1100^{\circ}C$. Thus, we experimentally investigated whether the environmentally stable incineration was achieved when the sample was thermally treated using the Lab-scale (1 kg/hr). We analyzed five types of exhaust gas; the 02 concentration was high, but the CO amount decreased. Complete combustion is difficult because of the small size of the furnace due to the nature of Lab-scale. The organic chlorine-containing pesticide had an average decomposition rate of 99.9935%. Considering the decomposition rates of organic chlorine-containing pesticide in this study, the incineration treatment at over 2 ton/hour, which is typical for a conventional incinerator, is possible. Considering the occurrence of dioxins and unintentional persistent organic pollutants, it can operate at more than $1,100^{\circ}C$.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.

A Study on Ventilation Characteristics in Fuel Preparation Room of Hydrogen Fueled Vessel (수소추진선박의 연료준비실내의 환기특성에 관한 연구)

  • Bo Rim Ryu;Phan Anh Duong;Quoc Huy Nguyen;Hokeun Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.158-159
    • /
    • 2022
  • Due to the climate crisis, various environmental regulations including greenhouse gas reduction are in effect. This is not limited to any specific industry sector, but is affecting the entire industry worldwide. For this reason, the IMO and governments of each country are announcing strategies and policies related to the shipbuilding and shipping industries. The current regulations can be partially resolved through additional facilities such as scrubbers while using existing fossil fuels, but ultimately, the emission of greenhouse gases such as CO2 from the exhaust gases generated by ships must be restricted through energy conversion. To this end, it is necessary to develop fuels that can replace traditional fuels such as oil and natural gas. Among them, hydrogen is attracting attention as a clean energy that does not emit pollutants when used as a fuel. However, hydrogen has a wide explosive range and a fast dispersion speed, so research on this is necessary. Therefore, in this paper, when hydrogen leakage occurs in the fuel preparation room of a hydrogen-powered ship, the trend was analyzed and the ventilation characteristics were investigated.

  • PDF

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

A Study on the Oxy-Combustion of the Coal in Drop Tube Furnace (Drop Tube Furnace에서 석탄의 순산소 연소 특성)

  • Roh, Seon Ah;Yun, Jin Han;Lee, Jung Kyu;Keel, Sang In;Min, Tai Jin;Kim, Sang-Bok;Park, In-Yong;Han, Bangwoo;Kim, Jin-Tae
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.367-371
    • /
    • 2021
  • The oxy-combustion system is one of the carbon recovery and storage technologies (CCS: Carbon capture & storage) that performs coal combustion using pure oxygen and recirculated flue gas. This is a technology that facilitates storage of carbon dioxide by generating an exhaust gas consisting of only carbon dioxide without a process of separating carbon dioxide and nitrogen when coal is burned using pure oxygen and recirculated flue gas mixture instead of a conventional air combustion system that produces carbon dioxide and nitrogen mixed exhaust gas. In this study, the characteristics of generated NO and SO2 as atmospheric pollutants during oxy-combustion were examined using O2/CO2 mixed simulation gas. The reaction temperature was varied from 900 ℃ to 1200 ℃ and oxygen partial pressure was varied from 30% to 50%. The results showed that NO and SO2 concentrations in flue gas increased as the oxygen concentration and the reaction temperature in the furnace increased. The partial pressure of CO2 in flue gas also increased as the oxygen concentration and the reaction temperature in the furnace increased. As a results of comparing NO production of 30% O2/CO2 oxy-combustion with air combustion, NO in flue gas increased with reaction temperature in both experiments and NO of oxy-combustion was 40 ~ 80 ppm lower than that of air combustion.