• 제목/요약/키워드: Exhaust manifold runner

검색결과 2건 처리시간 0.014초

하이드로포밍 기술을 이용한 배기 매니폴드 런너의 최적화 (The optimization of exhaust manifold runner using Hydroforming Technology)

  • 엄인섭;남궁성;나상묵;김윤규;김동학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 2008
  • Hydroforming Technology has been applied to manufacture in various parts of automobile. Especially, Exhaust manifold has been applied to hydroforming method in the foreign advanced automotive company. Exhaust manifold runner is important exhaust parts that heat-resistant and exhaust flow characteristics are requested in the automobile. The purpose of this study is to optimize the manufacturing method of exhaust maniflold runner using FEA and to propose to get a optimization design direction. In addition, Comparative analysis between conventional exhaust maniflold and hydroformed exhaust maniflold has been done in view of weight-saving, manufacturing advantage.

  • PDF

Design of exhaust manifold for pulse converters considering fatigue strength due to vibration

  • Cho, Kyung-Sang;Son, Kyung-Bin;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.694-700
    • /
    • 2013
  • The design of the exhaust manifold for the pulse converters of a 4 strokes high power medium-speed diesel engine is presented in terms of fatigue analysis. The said system undergoes thermal expansion due to high temperature of exhaust gas and is exposed to intrinsic vibration of the internal combustion engine. Moreover, the exhaust pulse generates pressure pulsating along the runner inside manifold. Under such circumstances, the design and construction of exhaust manifold must be carried out in a way to prevent early failure due to fracture. To validate the design concept, a test rig was developed to simulate the combination of thermal and vibrational movements, simultaneously. Experimental results showed that a certain sense of reliability can be achieved by considering a field factor obtained from the results of engine bench tests.