• Title/Summary/Keyword: Exhaust gas heat exchanger

Search Result 92, Processing Time 0.027 seconds

Study on the Performance Characteristics of Exhaust Heat Recovery Device in Automobile (자동차용 배기열 회수 장치의 성능 특성에 관한 연구)

  • Hong, Young-Jun;Choi, Doo-Seuk;Kim, Jong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.78-84
    • /
    • 2012
  • The purpose of this study is to investigate the performance characteristics of new exhaust heat recovery device for the engine's fast warm-up. In this study, two different interior area designed for prototyping and on the exhaust heat recovery device to evaluate the performance compare the performance characteristics were chosen a better product. A company's product and selected prototype-2 were evaluated and compared the performance. This experiment was conducted under the same conditions. The time from starting to warm-up of engine was measured. As a result, the performance characteristics of the prototype-2 was not higher than that of the A company's product. However, in comparison with base system, prototype-2 of the exhaust heat recovery device discover that the warm-up time was shortened.

A Study on the Heat Exchanger Fouling Characteristics of Sludge Incinerator at the IronWorks (제철슬러지 소각로 열교환기에서의 파울링특성 연구)

  • 박상일;김정근;김기홍;박용준;조성문
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • A study was performed to measure and analyze the gas-side fouling of heat exchanger to cool the exhaust gas from sludge incinerator at ironworks. The incinerator gas passes through inside of the vertical tubes of heat exchanger to preheat the combustion air. This kind of fouling occurs at the entrance region of the heat exchanger and thus the perforated fouling plate was designed to measure the gas-side fouling and to analyze the particulate deposit. As a result of analysis, the particulate deposition rate was influenced by temperature, particulate composition and size and also the deposition patterns were different according to the location of perforated fouling plate. The computational analysis was performed to obtain the deposition rates at the perforated fouling plate and the calculation showed that the deposition rate was varied with the hole size and particulate size. It was proved that the fouling at the entrance region of heat exchanger could be measured by the perforated fouling plate designed in this study.

Study on the Apply Characteristics to the Gasoline Engine of Exhaust Heat Recovery Device Counterflow (대향류식 배기열 회수장치의 가솔린기관 적용 특성에 관한 연구)

  • Shin, Suk-Jae;Kim, Jong-Il;Jung, Young-Chul;Choi, Doo Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.153-158
    • /
    • 2013
  • The purpose of this study is to investigate the performance characteristics of the counterflow exhaust heat recovery device for the applied gasoline engines. The EHRS device is installed behind the catalyst. This study investigates the engine warm-up characteristic, the exhaust noise characteristic, the back-pressure characteristic. The engine warm-up characteristics is (load 0%, load 10%, load 20%) in (idle, 1000rpm, 1500rpm, 2000rpm, 2500rpm) conditions by measuring the time it warmed up, coolant temperature ($25^{\circ}C{\sim}80^{\circ}C$) until the performance evaluation is performed. The wide open throttle and the coast down the exhaust noise and the back-pressure characteristic experiment repeated twice. The test conditions is 950rpm~6,050rpm proceed experiment repeated 3-5 times. Load 0% idle conditions except the results improved engine warm-up characteristics. The exhaust noise obtain similar results the BASE+EHRS W/O_FRT_MUFF with BASE and back-pressure to obtain similar results BASE+EHRS W/O_FRT_ MUFF with BASE+EHRS.

The Effect of Cooling Efficiency on Fouling by EGR Cooler Internal Shape (EGR Cooler 내부 형상에 따른 Fouling이 냉각 성능에 미치는 영향)

  • Nam, Youn-Woo;Oh, Kwang-Chul;Lee, Chun-Hwan;Lee, Chun-Beom;Lee, Won-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2011
  • Understanding the exhaust gas recirculation (EGR) cooler fouling in diesel engine is important factor in the durability characteristic of a EGR system. We develope a test rig and PM feeder using carbon black to examine the effect of fouling on EGR cooler devices those were consisted of flat and shell & tube type. The EGR cooler fouling process is a complex interaction involving heat exchanger shape, boundary condition, constitutes, chemistry and operating mode. As the soot deposited to EGR cooler, these formed a thin deposit layer that was less heat exchange than the fresh status of tube enclosing the exhaust gas, resulting in lower heat exchange effectiveness in both type coolers. But these deposits caused different results in pressure drop, it is increased in flat type, but decreased in Shell & tube type of EGR cooler. A cause was estimated from a change of the flow structure and a decrease of contact area as the EGR cooler fouling.

Preliminary Design of a High Altitude Test Facility using a Secondary Throat Exhaust Diffuser and an Ejector (이차목 디퓨저와 이젝터를 사용한 고공환경모사장치 예비설계)

  • Kim, Joong-Il;Jeon, Jun-Su;Kim, Tae-Wan;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.475-478
    • /
    • 2012
  • In this study, preliminary design of a high-altitude test facility (HATF) was performed to simulate the high-altitude environment using a rocket engine that liquid oxygen and kerosene were used as the propellant. Experimental facility consists of vacuum chamber, supersonic exhaust diffuser, heat exchanger, ejector and gas generator. The vacuum chamber was simulated and maintained high-altitude environmental pressure by supersonic exhaust diffuser. Combustion gas of the rocket engine was cooled by water at heat exchanger after that the mixed gas was emitted to the air by ejector. The ejector which was operated by the steam generator using 75% ethanol and liquid oxygen as propellants and water for steam maintains a vacuum condition.

  • PDF

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

A Design and Application of the Ventilating and Heating System of T-103 Trainer Aircraft for Improvement (T-103 훈련기의 환기와 난방 시스템 개선에 관한 연구)

  • Jung, Daehan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.277-284
    • /
    • 2013
  • In this paper, the ventilating and heating system of T-103 trainer aircraft were investigated and redesigned to improve its poor performance. The ventilation system of the trainer was designed to increase the mass flow rate of fresh air by using air intake valves. The flow-in air through the air intake valve is supplied to the cabin by the ram effect of aircraft and the propeller. And the additional heating system was installed to improve the temperature of the cabin inside. The wasted heat from the exhaust gas of the engines was used as heat source of the additional heating system by installing an heat exchanger around the exhaust nozzle. The additional fresh air and the heated air enter the cabin via two ducts mounted under the instrument panel and behind the pedal in the cabin. The additional ventilating and heating system can be controlled by the first pilot and the secondary pilot individually using the control knob equipped separately. After mounting the additional ventilating and heating system, evaluations such as inspection of parts and component, ground run-up test, in-flight test, user test, etc. were conducted. The result of the tests was sufficient to meet the requirements of the manuals, and the pilots were satisfied with the additionally mounted systems.

A study of cleaning of heat transfer surface in thermal power system (열동력 시스템 내부 열교환 표면의 클리닝에 관한 연구)

  • HAN, Kyu-il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.576-582
    • /
    • 2015
  • The efficiencies of thermal power system using fossil fuel depend on heat exchangers which extract energy from the exhaust gas before it is expelled to the atmosphere. To increase heat transfer efficiency it is very important to maintain the surface of heat exchanger as clean condition. The accepted skill of cleaning of fouled surface of heat exchanger is soot blowing. A high pressure jet of air is forced through the flat surface of plate to remove the deposit of fouling. There is, however, little knowledge of the fundamental principles of how the jet behave on the surface and how the jet actually removes the deposit. Therefore, the study focuses on the measuring of cleaning area and cleaning dwell time after accumulating the simulated deposit on the flat surface. The deposit test rig was built for the study and simulated deposit material is used after measuring the physical property of the each material by shearing stress test. Much data was obtained for the analysis by the parameters change such as the different jet speed, different inner pressure and variable distance of the jet from the test rig surface. The experimental data was compared with the theoretical equation and most of the data matches well except some extreme cases.

Application of a Large Scale Heat Pipe System to Preheating the Fuel Gas of Low Heating Value (분리형 히트파이프의 저발열량 연료가스 예열시스템에 대한 적용연구)

  • Park, Heung Soo;Riu, Kap Jong;Lee, Jin Ho;Lee, Yong Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1085-1097
    • /
    • 1999
  • A separate heat pipe system capacity of 3,700kW has been developed and applied to preheating the blast furnace gas for recovery of the waste heat from boiler. The system is designed to preheat the blast furnace gas up to $126^{\circ}C$ by using tho boiler exhaust gas of which temperature is $180^{\circ}C{\sim}220^{\circ}C$. The arrangement of the fin tubes as well as the shape of the fin has been carefully determined to minimize the fouling problems. The heat pipe system was found to be stable in circulation of the working fluid and the range of the temperature variation of the preheated blast furnace gas was within $10^{\circ}C$. It was proved through a long-term test that the selected tube arrangement and the shape of the fins are proper to prevent the fouling problems and that the pay-back period of the system Is within one year.

Effects of Novel Fin Shape of High Temperature Heat Exchanger on 1 kW Class Stirling Engine (1kW급 스털링엔진 고온 열교환기의 Fin 형상 개선 효과 분석)

  • Ahn, Joon;Kim, Seok Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.545-552
    • /
    • 2017
  • In this research, numerical analysis was carried out on novel and existing fins, adjusted in terms of factors such as length, spacing, and angle, of a high-temperature heat exchanger for a 1 kW class Stirling engine, designed as a prime mover for a domestic cogeneration system. The performance improvement as a result of shape optimization was confirmed with numerical analysis by including the air preheater, which was not considered during optimization. However, a negative heat flux was observed in the cylinder head portion. This phenomenon was clarified by analyzing the exhaust gas and wall surface temperature of the combustion chamber. Furthermore, assuming an ideal cycle, the effects of heat transfer enhancement on the thermodynamic cycle and system performance were predicted.