• 제목/요약/키워드: Exhaust gas heat exchanger

검색결과 92건 처리시간 0.024초

가솔린 엔진의 배기 열교환기가 촉매 온도에 미치는 영향에 관한 연구 (Effect of Exhaust Heat Exchanger on Catalytic Converter Temperature in an SI Engine)

  • 이석환;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.9-16
    • /
    • 2004
  • Close-coupled catalyst (CCC) can reduce the engine cold-start emissions by utilizing the energy in the exhaust gas. However, in case the engine is operated at high engine speed and load condition, the catalytic converter may be damaged and eventually deactivated by thermal aging. Excess fuel is sometimes supplied intentionally to lower the exhaust gas temperature avoiding the thermal aging. This sacrifices the fuel economy and exhaust emissions. This paper describes the results of an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of close-coupled catalytic converter. The exhaust heat exchanger successfully decreased the exhaust gas temperature, which eliminated the requirement of fuel enrichment under high load conditions. However, the cooling of the exhaust gas through the heat exchanger may cause the deterioration of exhaust emissions at cold start due to the increment of catalyst light-off time.

배기열(排氣熱) 회수용(回收用) 축류(軸流) 회전형(回轉形) 현열교환기(顯熱交換器)의 최적설계(最適設計)에 관한 연구(硏究) (A Study on the Optimum Design of Axial Rotary Sensible Heat Exchanger for the Heat Recovery of Exhaust Gas)

  • 최영돈;박상동;우정선;태춘섭
    • 설비공학논문집
    • /
    • 제3권2호
    • /
    • pp.131-141
    • /
    • 1991
  • A method of optimum design of an axial rotary sensible heat exchanger for the heat recovery of exhaust gas from the air conditioning space was developed in consideration of economics of investment cost and profit according to the installation of heat exchangers. Leakage rate of exhaust gas was calculated and the correlation for the pressure drop due to leakage of exhaust gas was proposed. Heat transfer between the matrix and exhaust and intake gas was analysed to calculate the effectiveness of heat exchanger, which was used for the optimum design of rotary heat exchanger. The results show that optimum rotational speed increases as the length of rotor increases and there exists optimum NTU which maximizes the gain of total cost according to the installation of rotary heat exchanger.

  • PDF

자동차 배기가스 유량 및 온도 변화에 따른 열전발전용 열교환기 발열량 특성에 관한 연구 (Thermal Caracteristics of the Automobile Exhaust gas based Heat exchanger with various Exhaust gas Temperature and Mass flow rate)

  • 김대완;기한 에카나야케;이무연
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.15-20
    • /
    • 2018
  • 본 논문은 자동차 열전발전용 열교환기에서 배기가스의 유량과 온도 변화에 따른 발열량 특성을 수치적으로 연구하였다. 자동차 열전발전용 열교환기는 내부에 핀을 설치하여 자동차 배기가스에서 나오는 열에너지를 열전소자로 최대 값을 전달할 수 있도록 하였으며, 상용 프로그램인 CAD를 이용하여 설계하였다. 그리고 배기가스의 유량과 온도 변화에 따른 열교환기 발열량 특성을 분석하기 위하여 상용 프로그램인 ANSYS CFX v17.0을 이용하여 배기가스 유량은 0.01, 0.02, 0.03 kg/s로 변화시키고, 배기가스 온도는 400, 450, 500, 550, $600^{\circ}C$로 변화시켜 수치해석 하였다. 결론적으로 열교환기의 입구 측과 출구 측 배기가스 압력 차는 배기가스의 유량에 따라 결정된다. 배기가스 유량이 증가하면 열교환기 입구 측과 출구 측 압력차는 증가하지만, 열교환기 입구 측과 출구 측 배기가스 압력차는 배기가스 온도에 따라 변하지 않는다. 따라서 열교환기 표면 온도를 최대 값으로 얻기 위해서는 배기가스 유량은 낮추고, 배기가스 온도는 높여야 한다는 결론을 도출하였다.

가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화 (Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine)

  • 이석환;박정서;배충식
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

세라믹 열교환기의 성능평가를 위한 실험적 연구 (An Experimental Study for Performance Evaluation of a Ceramic Heat Exchanger)

  • 최현수;신동훈
    • 한국연소학회지
    • /
    • 제16권1호
    • /
    • pp.46-51
    • /
    • 2011
  • Exhaust gas of an industrial furnace used at such as metallurgy or ceramic manufacturing usually contains thermal energy with high temperature which can be recycled by heat exchanger. However, when the temperature of the exhaust gas is high such as more than $1,000^{\circ}C$, ordinary metallic heat exchanger cannot fully recover the heat due to the limitation of operating temperature depending on the material property. In the present study, a compact ceramic heat exchanger of cross flow type is introduced and evaluated by heat exchange rate and operating temperature. The ceramic heat exchanger can endure the gas temperature more than $1,300^{\circ}C$, and its volumetric heat exchanging rate exceeds 1 MW/$m^3$. The experimental data is also compared with the previous numerical result which shows reasonable agreement. Meanwhile, the gas leakage rate is measured to be about 3~4%, and heat loss to environmental air is about 23~26% of the fuel energy.

소형 가스엔진 발전기의 배기가스 폐열을 이용한 바이오가스 개질 가능성에 관한 실험적 연구 (An Experimental Study on the Possibility of Biogas Reforming using the Waste Heat of a Small-Sized Gas Engine Generator)

  • 차효석;김태수;엄태준;정충수;전광민;송순호
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.236-242
    • /
    • 2012
  • This study has been carried out the experiment for the possibility of biogas reforming using waste heat. The source of this waste heat is the exhaust gas from a small-sized gas engine generator. For recovering the waste heat, Two-stage heat exchanger is manufactured. The two-stage heat exchanger is composed of a heat exchanger for the exhaust gas and a heat exchanger for the water. This two-stage heat exchanger is used for reforming the biogas by means of on-site hydrogen production at the small-sized gas engine generator. The two-stage heat exchanger is coupled with the biogas reformer which is a kind of catalytic reformer. To confirm a heat recovery efficiency of the two-stage heat exchanger, temperature differences of inlet and outlet locations are measured. Also, the variations of syngas concentrations with various biogas flow rates are investigated. As a result using manufactured two-stage heat exchanger, the biogas can be reformed from waste heat recovery. This experiment suggests that the exhaust gas heat exchanger is available for reforming the biogas.

다단 물유동층 열교환기에 의한 보일러 배가스의 폐열 회수 성능에 관한 연구 (A Study on the Heat Recovery from Boiler Exhaust Gas with Multi-stage Water-fluidized-bed Heat Exchanger)

  • 김대기;박상일;김한덕
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1776-1783
    • /
    • 2001
  • Heat recovery from boiler exhaust gas with multi-stage water-fluidized-bed heat exchanger is analyzed in this study. The recovered energy here is not only sensible heat but also latent heat contained in the exhaust gas. In this system direct contact heat transfer occurs while exhaust gas passes through water bed and the thermal energy recovered this way is again delivered to the water circulating through heat exchanging pipes within the bed. Thus the thermal energy of exhaust gas can be recovered as a clean hot water. A computer program developed in this study can predict the heat transfer performance of the system. The results of experiments performed in this study agree well with the calculated ones. The heat and mass transfer coefficients can be fecund through these experiments. The performance increases as the number of stage increases. However at large number of stages the increasing rate becomes very low.

온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성 (Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

초고온융 공기예열식 열교환기의 개발 및 성능 평가 (The Development and Performance Evaluation of the Air-preheating Heat Exchanger for Ultra-high Temperature Applications)

  • 박용환
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.78-84
    • /
    • 1999
  • A compact air-preheating type heat exchanger was developed and tested for the ultra-high temperature heat recovery applications. For the direct use of exhaust gases up to $1200^{\circ}C$, the heat exchanger adopted a ceramic core with high strength and low thermal expansion coefficient less than $1{\times}10^{-6}^{\circ}C^{-1}$. The ceramic core was fabricated by special extrusion and bonding techniques. To minimize thermal stresses in the core, spring-loaded sealing mechanism was designed and successfully installed. 1-pass air flow scheme was adopted for the compactness and cost-savings. The pressure test for the ceramic core showed no failure under 35 kPa and less than 3% leak under 7 kPa. Flue gas simulation system was developed to investigate the performance of the heat exchanger. The test results showed normal operations of the heat exchanger up to $1200^{\circ}C$ of exhaust gases and relatively high heat recovery efficiencies of 31~39% depending upon exhaust gas temperatures..

  • PDF