• Title/Summary/Keyword: Exhaust Sensor

Search Result 92, Processing Time 0.025 seconds

Low Carbonization Technology & Traceability for Sustainable Textile Materials (지속가능 섬유 소재 추적성과 저탄소화 공정)

  • Min-ki Choi;Won-jun Kim;Myoung-hee Shim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.

Exhaust Gas Emission and Particulate Matter (PM) from Gasoline, LPG and Diesel Vehicle Using Different Engine Oil (가솔린, LPG, 디젤 차량에서 윤활유에 따른 배출가스 및 입자상물질)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Woo, Youngmin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Lee, Minseob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2016
  • This study effect of engine oils on regulated fuel economy and emissions including particulate matter (PM) to provide basic data for management of engine oil in vehicles. Three engine oils (Group III base oil, Group III genuine oil with additive package and synthetic oil with poly alpha olefins (PAOs)) were used in one gasoline, one LPG(liquefied petroleum gas) and two diesel vehicles. In the case of diesel vehicles, one is a diesel vehicle without DPF (diesel particulate filter) other is a diesel vehicle with DPF. In this study, the US EPA emission test cycle FTP-75, representing city driving, was used. HORIBA, PIERBURG, and AVL gas analyzers were used to measure the fuel economy and regulated emissions such as CO, NOx, and THC. The number of PM was measured using a PPS (pegasor particle sensor). And, the shape of PMs was analyzed by SEM (scanning electron microscope). The effects of oil type on fuel economy, exhaust gas, and PM were not significant because engine oil consumption by evaporation and combustion in the cylinder is very tiny. Fuel and vehicle type were dominant factors in fuel economy and emissions. HC emission from gasoline vehicles was higher than that from other vehicles and NOx emission from diesel vehicles was higher than that from other vehicles. The number of PM was not affected by the engine oil, but by the driving pattern and fuel. The shapes of the PM, sampled from each vehicle using any test engine oil, were similar.

A Study on NOx Reduction Characteristics of LNT Catalyst with Fuel Injection Control in Light-duty Diesel Engine (승용디젤엔진의 연료분사 제어를 통한 LNT 촉매의 NOx 저감 특성에 관한 연구)

  • Hwang, Seung-Kwon;Ko, A-Hyun;Yoon, Joo-Wung;Myung, Cha-Lee;Park, Sim-Soo;Kim, Eun-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.150-155
    • /
    • 2012
  • Lean NOx Trap (LNT) catalysts are capable of reducing exhaust NOx emissions from diesel engines. LNT stores NOx in lean condition and exhausts N2 by reducing NOx in rich condition. NOx reduction characteristic of LNT catalysts using throttle position sensor and fuel injection timing control for light-duty diesel engine was investigated. In contrast to SCR system, LNT catalyst uses diesel fuel in resuctant. Also if the concentration of reductant is exceeded, excessive amount of reductant will slip throughout LNT and cause another emission problem. Thus LNT regeneration with precise engine control established that can make higher NOx conversion efficiency and lower fuel penalty, prevent another emission problem. NOx and reductant concentration were measured by the NOx sensor and Mexa7100D equipped inlet and outlet of catalyst. As a result of engine test, regeneration strategy has reached high of 77.8% NOx conversion efficiency according to engine operation condition. Moreover, we have proved that it is possible to use regeneration strategy of LNT within 5% fuel penalty.

Implementation of Self Diagnostics Low-power Embedded Linux System using Telematics (텔레매틱스을 통한 자가진단 저전력 임베디드 리눅스 시스템 구현)

  • Ju, Jae-han
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.300-305
    • /
    • 2017
  • It is necessary to establish a system suitable for the driving vehicle so that it can effectively search for and modify various data anywhere and anytime by effectively linking communication with the computer system in the running vehicle and to control the equipment properly for smooth operation on a limited platform do. Also, vehicle CAN communication is used to extract system engine information, and data is transmitted using ZigBee for this information transmission. Therefore, OBD-II protocol, which is provided by the vehicle itself, is used for vehicle CAN to obtain vehicle status information and exhaust gas using various sensor information of the vehicle and O2 sensor value, and transmits it to the ZigBee main control system. In this study, we implemented a system that can reduce the battery load damage to the maximum by reducing the power consumption to the maximum, and to monitor the internal state of the vehicle through ZigBee communication with the embedded system for low power vehicles.

Implement of Knocking diagnostic algorithm and design of OBD-II Diagnostic system S/W on common-rail engine (커먼레일 엔진에서 노킹 진단 알고리즘 구현 및 OBD-II 진단기 S/W 설계 방안)

  • Kim, Hwa-Seon;Jang, Seong-Jin;Nam, Jae-Hyun;Jang, Jong-Yug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2446-2452
    • /
    • 2012
  • In order to meet the recently enhanced emission standards at home and abroad, it is necessary to develop the CRDI ECU control algorithm that users can adjust fuel injection timing and amount in response to their needs. Therefore, this study developed the simulator for knocking analysis that enables knocking discrimination and engine balance correction applicable to the ECU exclusive to the industrial CRDI engine. The purpose of this study is to provide the driver-oriented diagnostic service that enable drivers to diagnose vehicles directly by developing diagnostic devices for vehicles with ths use of the results of the developed simulator for knocing analysis according to the OBD-II standards. For this purpose, this study aims to improve the fuel efficiency of vehicles by proposing the S/W design method of the OBD-II diagnosis device that can provide real-time communcations with the use of wired system and bluetooth module as a wireless system to send and recevice automobile fault diagnosis signal and sensor output signal, and to suggest an improvement for engine efficiency by minimizing the generation of harmful exhaust gas.

Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency (LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.3
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

Performance Evaluation of Measuring Instrument for Infra-Red Signature Suppression System Model Test (적외선 신호저감 장치 모형시험을 위한 계측기의 성능평가)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2023
  • Modern naval ships install an Infra-Red Signature Suppression system (IRSS) in their exhaust pipe to reduce infrared signature emitted to the outside. In addition, naval ships are strategic assets with a very long life cycle, so high reliability of the performance of the equipment on board must be guaranteed. Therefore, equipment such as IRSS is evaluated for performance through model testing at the design stage. A variety of measuring instruments are used in IRSS model testing, and the reliability of these instruments must also be guaranteed. In this paper, a study was conducted to evaluate the reliability of measurement equipment used in IRSS model testing. The test equipment and instruments used were a hot gas wind tunnel, pitot tube, digital differential pressure gauge, thermocouple sensor, and digital recorder. As the fan speed of the hot gas wind tunnel increased, the measurement deviation of the flow decreased, and the temperature output of the thermocouple sensor showed differences in response time and stability depending on the method used.

The Realization on GAS Sensor Module for Inteligent Wireless Communication (지능형 무선통신용 가스 센서 모듈 구현)

  • Kim, Hyo-Chan;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.123-132
    • /
    • 2012
  • Gas sensors has been used very differently that depending on following purposes; Automotive (exhaust gas, fuel mixture gas, oxygen, particulates), agriculture / food industry (fresh, stored, CO2, humidity, NH3, nitrogen oxide gas, organic gas, toxic gas emitted from pesticides and insecticides), industrial / medical (chemical gas, hydrogen, oxygen and toxic gases), military (chemical weapon), environmental measurements (CO and other air pollution consisting of sulfur and nitrogen gas), residential (LNG, LPG, butane, indoor air, humidity). The types of industrial toxic substances are known about 700 species and many of these exist in gaseous form under normal conditions. he multi-gas detection sensors will be developed for casualties that detect the most important and find easy three kinds of gases in marine plant; carbon dioxide(CO2), carbon(CO), ammonia(NH3). Package block consists of gas sensing device minor ingredient, rf front end, zigbee chip. Develope interworking technology between the sensor and zigbee chip inside a package. Conduct a performance test through test jig about prototype zigbee sensor module with rf output power and unwanted emission test. This research task available early address when poisonous gas leaked from large industrial site and contribution for workers' safety at the enclosed space.

Development of the Integrated Exhaust System and Techniques of Nitrogen and Condensate for Fuel Cell Electric Vehicle (연료전지 자동차용 질소/응축수 통합배출시스템 및 기술 개발)

  • Shim, Hyo Sub;Kim, Hyo Sub;Kim, Jae Hoon;Kwon, Bu Kil;Lee, Hyun Joon;Kim, Chi Myung;Park, Yong Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.516-524
    • /
    • 2014
  • Proper discharge of nitrogen gas and water condensate is required in a conventional fuel cell system for performance, stability and durability of fuel cell stacks. Present study covers the development of integrated unit and its functioning logic for simultaneous nitrogen gas purge and water condensate drainage in a fuel cell vehicle system. Configuration of condensate drainage pipe, purge valve and level sensor is considered and optimized in physical integration. As a key factor, discharge time is considered and optimized based on the test result of constant-current operation with various operating temperature in logic development. Consequently, derived optimal values are applied and verified in actual vehicle drive mode test. Increase of system design flexibility, weight reduction and cost reduction are anticipated with this study. Additional study for physical and logical improvement is currently being implemented.

A Study on the Effects of EGR on Engine Performance and Emissions of a HCCI(Homogeneous Charge Compression Ignition) Engine (HCCI 엔진에서 엔진성능 및 배출에 미치는 EGR의 영향)

  • Han, Sung-Bin;Chang, Yong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1630-1636
    • /
    • 2003
  • Automobile companies and research institutions in leading automobile-manufacturing nations have recently been very active with research regarding the HCCI engine for use in future vehicles. Because HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency found in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NO$_{x}$ and PM (particulate matter). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. for this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders. The experimental study of the effects of EGR rate on various gas emissions, engine performance, etc. should prove to be a valuable source of information for the development of the HCCI engine.e.