• Title/Summary/Keyword: Exhaust Oxygen Concentration

Search Result 78, Processing Time 0.031 seconds

A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System (박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF

A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines (디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-Whan;Ha, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

The Effect of Oxygen Concentration in Hot Exhaust Gas on the $NO_{x}$ Emission of Diffusion Flame in Exhaust Gas (고온 배기가스의 산소농도가 배기가스이용 확산화염의 $NO_{x}$ 발생에 미치는 영향)

  • Sohn, H.S.;Jang, S.W.;Choi, D.S.;Kim, H.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.115-120
    • /
    • 2001
  • The present study examined the possibility of $NO_{x}$ reduction in the high temperature industrial furnaces. duct burner of gas turbine cogeneration and two-stage gas turbine combustor. The experimental study was carried out for the diffusion flame of second stage combustor with the variations of oxygen concentration and supplying rate of hot exhaust gas from first stage combustor. It also examined the flammability range and $NO_{x}$ formation of the second stage combustor in which the fuel is supplying into the mixture of oxygen hot exhaust gas from first stage combustor. The results show that the enrichment of oxygen and increase of exhaust gas lead to increase the $NO_{x}$ up to 50 ppm with 23% $O_{2}$ condition.

  • PDF

A study on the ceramic filter trap in CI engine (CI기관에 있어서 세라믹 필터트랩에 관한 연구)

  • 한영출;유정호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.54-60
    • /
    • 1988
  • This study is a theoretical analysis and experimental effect of oxygen concentration, exhaust velocity and trap inlet temperature on particulate ignition temperature with installation of ceramic filter trap in diesel engine. So the following results are obtained. 1, Based on the fundamental experiments of the regeneration process, the analytical model was developed and the results from the analytical model agreed with the experiments, then the validity of the model was proved. 2, The ignition temperature for accumulated particulate was proportional to the exhaust velocity and it was known that the optimum exhaust velocity was about 15m/sec. 3, The ignition temperature for accumulated particulate was inversely proportional to the oxygen concentration and the trap inlet temperature, and a minimum oxygen concentration of 5% was required to sustain regeneration. 4, This experimental filter trap(EX-66) is found about 30% of smoke reduction efficiency in comparison with existing muffler.

  • PDF

A Study on the Effects of Recirculated Exhaust Gas on Soot Emissions in Diesel Engines (디젤기관 매연 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.142-154
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristic of soot emissions have been investigated by using an eight-cylinder, four-stroke, direct injection and water-cooled diesel engine operating at several loads and speeds. The experiments in this study are carried out at the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate are used to analyze and discuss the influences of EGR rate on soot emissions. Results of this study indicate that soot emissions increase owing to the drop of intake oxygen concentration and the rise of equivalence ratio as the EGR rate increases at a given engine load and speed, especially the high load.

  • PDF

The study of combustion gas characteristic by incinerator operation condition. (소각로 운영조건에 따른 연소배가스 특성 연구)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2010
  • This study was done to analyze the condition of combustion exhaust gas that is produced according to incinerator operating condition in A area Kyonggido. The boiler exhaust gas temperature, the oxygen concentration of boiler, the outgassing temperature of Semi Drying Sorber(SDS), the temperature of catalytic reactor, the concentration of NOx, SOx, CO, Hcl and Dust were investigated by change the temperature of incinerator. The concentration of SOx, CO, HCL and DUST were below 5 ppm as increase the temperature of incinerator however the concentration of NOx was increased from 40 ppm to 70 ppm as increase the temperature of incinerator. The boiler exhaust gas temperature and the temperature of catalytic reactor were not changed however the oxygen concentration of boiler was decreased gradually as increase the temperature of incinerator.

The combustion characteristics of LNG-Oxygen Enriched Combustion in swirl flame. (LNG-산소부화 선회류연소특성)

  • Kim, Kyung-Lae;Kim, Hyouck-Ju;Ryu, Jeong-In
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.41-47
    • /
    • 2002
  • Oxygen has been used extensively in various industries for many years. Despite earlier successful attempts to use oxygen in industrial combustion furnaces, its full theoretical researches have only recently begun to be realized. The aim of this study is to investigate the effect of oxygen enriched combustion. This paper analyzes the characteristics of oxygen enriched combustion, and deals with the experimental investigation of the flame temperature and NOx concentration in exhaust gas. The flame temperature, concentration of exhaust gas were measured and flame configurations were photographed according to the variation of oxygen concentrations in oxidizer.

  • PDF

Effects of Oxygen Concentration on the NOx Emission of Non-premixed Flame in Hot Exhaust Gas (고온 배기가스의 산소농도가 비예혼합화염의 NOx 발생에 미치는 영향)

  • Sohn, Hwa-Seung;Kim, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.833-841
    • /
    • 2002
  • The present study examined the possibility of NOx reduction in the high temperature industrial furnaces, duct burner of gas turbine cogeneration and two-stage gas turbine combustor. The experimental study was carried out for the non-premixed flame of second stage combustor with the variations of oxygen concentration in the hot exhaust gas of first stage combustor. It also examined the flammability range, temperature and NOx, $CO_2$, $O_2$formation in the combustor with respect to oxygen concentration in which the fuel(natural gas) is supplying into the hot exhaust gas. The results show that the inner temperature of flame reaches 1,20$0^{\circ}C$ at EGR $O_2$23% and that 15ppm of NOx at EGR $O_2$15.5% increases up to 60ppm at EGR $O_2$23%. It is believed that Fenimore's prompt NOx mechanism is more influential on the NOx formation than Zeldovich's thermal NOx mechanism does.

Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축착화 엔진에서 질소와 이산화탄소의 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.171-178
    • /
    • 2008
  • The combustion and exhaust emission characteristics were investigated in an DME fueled HCCI engine. Carbon dioxide, nitrogen and mixed gas, which was composed of carbon dioxide and nitrogen, were used as control parameters of combustion and exhaust emission. As the oxygen concentration in induction air, which was occurred by carbon dioxide, nitrogen and mixed gas, was reduced, the start of auto-ignition was retarded and the burn duration was extended due to obstruction of combustion and reduction of combustion temperature. Due to these fact, indicated mean effective pressure was increased and indicated combustion efficiency was decreased by carbon dioxide, nitrogen and mixed gas. In case of exhaust emission, hydrocarbon and carbon monoxide was increased by reduction of oxygen concentration in induction air. Especially, partial burning was appeared at lower than about 18% of oxygen concentration by supplying carbon dioxide. However it was overcome by intake air heating.

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas (배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발)

  • EUNJU SHIN;YOUNG BAE KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.