• Title/Summary/Keyword: Exhaust Noise

Search Result 247, Processing Time 0.025 seconds

A Study on the Heat Rejection to Coolant in a Gasoline Engine (가솔린 엔진에서의 냉각수로의 전열량에 대한 연구)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.

Fundamental study on sound absorption of a dental hand piece using micro-porous EPP substrate processed by UV laser (UV 레이저응용 마이크로 다공성 EPP 기판의 치과용 핸드피스 흡음성능에 관한 기초연구)

  • You, Dong-Bin;Shin, Myung-Ho;Byun, Hyo-Jin;Choi, Do-Jung;Sung, Kuo-Won;Ma, Yong-Won;Shin, Bo-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • Recently many studies to reduce the noise of dental hand piece which generate inevitably mechanical sound to offend to the ear of a patient have been spotlighted. Generally, methods of adding a sound absorbing material inside the exhaust valve, air pump of machine or automobile are widely reported as optimal way to reduce the mechanical noise. In this paper we studied a new UV laser aided manufacturing of micro-porous structure of EPP substrate and applied dental hand piece to improve the efficiency of sound absorption. A lot of micro-sized pores were fabricated with UV laser processing on the surface of sliced EPP substrate. From fundamental experiments, more high-performance of micro-porous EPP substrate has finally demonstrated for sound-absorbing structure of the micro muffler inside dental hand piece, which actually has the excellent potential to apply a lot of potable machine.

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Hull Form and Layouts of 740-ton Replacement Vessel for R/V Eardo of KIOST: Ship Design and SMRs (740톤급 종합해양연구선 이어도호 대체선 선형 및 설계 특성)

  • Park, Cheong Kee;Park, Dong-Won;Lee, Gun Chang;Kim, Young Jun;Min, Young Ki
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • R/V EARDO, commissioned in 1992, has successfully carried out ocean research campaigns in Korean jurisdictional and adjacent waters, including continental margins and coastal zones within the Korean Exclusive Economic Zone (EEZ), for 29 years. However, it will soon be reaching the end of its useful service life. A replacement for R/V EARDO is urgently needed to ensure the safety of vessel itself and its crews, and efficient ship operation and maintenance, as well as to meet modern scientific mission requirements (SMRs). Basic specifications for a replacement ship have been devised and reviewed over the past nine months. A test of the proposed hull form was also performed. The total tonnage of the proposed vessel is approximately 740 tons, and the overall length and width are 62.0 and 11.6 m, respectively. The new ship will thus be 73% larger than the current R/V EARDO; in particular, the research workspace will be 4.4 times larger. The major design priorities are the propulsion system, efficiency of radiated noise and vibration control, and the dynamic positioning system. An environmentally friendly emission system, meeting International Maritime Organization (IMO) Tier III regulations, will be installed in the third exhaust pipe. Various wet and dry lab spaces as well as 32 different scientific instruments have also been considered in the ship design.

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

Evaluation of Airflow Control Capability of Natural Ventilators with Various Dampers (자연환기 벤틸레이터의 댐퍼 형태별 환기량 조절능력 평가)

  • Kim, Tae-Hyeong;Ha, Hyun-Chul;Park, Seung-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.4
    • /
    • pp.364-374
    • /
    • 2006
  • Natural ventilation technique could be the substitute for or the complement to the local exhaust ventilation system in the sense of protecting work environment. Moreover, it has many strong points ; almost no mechanical parts, no energy use and no noise. If applied appropriately, it could have the very high ventilation rate and save a lot of energy expense. But, it depends on the outdoor environment, especially temperature and wind speed/direction. Predicting the capacity of natural ventilation is not an easy job because it comes from both buoyancy and wind effect. Another problem is too much flow through the ventilator especially in winter time due to too much difference between indoor and outdoor temperature. Thus some ventilators in industries are sealed by door or plastic sheet, resulting in bad work environment. Various types of dampers are used to control the flow rate through ventilators. The capabilities of flow control by damper has not been estimated. In addition, it was not tested whether the damper could obstruct the flow through ventilator when fully opened. To answer these questions, 4 types of dampers were tested by using computational fluid dynamics. 10 different configurations includes no damper, full open and half open. Flow rates were estimated and airflow fields were analysed to clarify the before-mentioned questions. The dual type damper was the best choice for controling the capability of ventilator. In addition, the upward grill type damper was the best for not obstructing the air flow when fully opened.

Powder Metallurgy for Light Weight and Ultra-Light Weight Materials

  • Kieback, B.;Stephani, G.;Weiβgarber, T.;Schubert, T.;Waag, U.;Bohm, A.;Anderson, O.;Gohler, H.;Reinfried, M.
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.383-389
    • /
    • 2003
  • As in other areas of materials technology, the tendency towards light weight constructions becomes more and more important also for powder metallurgy. The development is mainly driven by the automotive industry looking for mass reduction of vehicles as a major factor for fuel economy. Powder metallurgy has to offer a number of interesting areas including the development of sintered materials of light metals. PM aluminium alloys with improved properties are on the way to replace ferrous pars. For high temperature applications in the engine, titanium aluminide based materials offer a great potential, e.g. for exhaust valves. The PM route using elemental powders and reactions sintering is considered to be a cost effective way for net shape parts production. Furthermore it is expected that lower costs for titanium raw materials coming from metallurgical activities will offer new chances for sintered parts with titanium alloys. The field of cellular metals expands with the hollow sphere technique, that can provide materials of many metals and alloys with a great flexibility in structure modifications. These structures are expected to be used in improving the safety (crash absoption) and noise reduction in cars in the near future and offer great potential for many other applications.

A Study on the Environmental Professionals′ Risk Perception towards Some Pollution Issues (일부 환경 전문가들의 환경 위해성 인식도에 관한 연구)

  • 신동천;박종연;임영욱;김진용;장은아;박성은
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.175-187
    • /
    • 1999
  • To investigate the risk perception of environmental issues, two consequtive surveys were conducted to environmental professionals using a standardized questionnaire from September to October in 1999. The number of subjects were 72 for the first survey and 68 for the second one. The questionnaire was consisted of items such as the degree of environmental pollution in Korea, risk perception of some issues on human health and ecosystem, and seriousness of the problems in the real situation in Korea. For the degree of environmental pollution in Korea, the average risk rating in the second test (7.4 point) was significantly higher than that in the first test (7.2 point). The risk perception on the general human health and ecosystem, and the seriousness in Korea situation were analyzed in the order of ′air pollution′, ′water pollution′,′soil contamination′,′waste′,′toxic chemical pollutants′,′food contamination′,′ocean contamination′, ′odor pollution′, and ′noise pollution′. Also ′toxic chemical pollutants′ problem was perceived to be the highest risk on general human health or ecosystem, and on present situation in Korea. ′Automotive vehicle exhaust′ problem was perceived to be the most severe environmental problems among specific 30 items. ′Industrial source air pollution′,′toxic air pollutants′, and ′domestic and industrial source pollutants to surface water′ were relatively severe environmental problems comparing to other problems. The pollution issues were classified into four categories by two aspects of perception; risk in general setting and seriousness in Korea situation. If the issues were highly serious in Korea and low risk perception in general setting then it is named "the Korea-specific group". Those that were all high score in two aspects, named "the Common group". Those that were all low in two aspects, named "the Nonsignificant group". And the issues were high risk perception in general setting and low seriousness in Korean situation, named "the Latent group".

  • PDF

Study on Performance of an Fuel Pressure Regulator under Failure Condition in an Electric Control Diesel Engine (전자제어 디젤엔진의 연료압력 레귤레이터 고장에 따른 진단 및 성능 연구)

  • Kim, Tae-Jung;Cho, Hong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1677-1683
    • /
    • 2015
  • To cope with exhaust gas regulation, Diesel engine applied to electronic control system. As it accurately regulated the injected fuel mass and the fuel efficiency and the output are increased but the noise and the vibration are decreased. In order to keep the performance of Electronic Diesel Control System, it is important to accurately control the fuel pressure. However, when the regulator of fuel pressure is not controlled properly, the failure phenomenons(starting failure, staring delay, accelerated failure, engine mismatch et al.) occur because the fuel pressure is not stabilize. In this study, effects on a fuel pressure, engine rotating speed according to the control rate of fuel-pressure regulator are investigated in order to analyzed the performance variation with failure of fuel-pressure regulator. As a result, when the control rate of a fuel-pressure regulator is 4%~6% lower than that of standard condition, the variation of engine's rpm and return fuel flow is increased, and the abnormal condition was occurred. Besides, it is possible to diagnose the failures on fuel-pressure regulator under these conditions.