• Title/Summary/Keyword: Exhaust Gas

Search Result 2,002, Processing Time 0.022 seconds

Plant Leave as an Indicator for Pollution by Hydrocarbons and Heavy Metals in Al-Zubair City, Southern Iraq

  • Sajjad W. Jaafar;Sattar J.Al. Khafaji
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • The potential sources and spatial distribution of heavy metals and polycyclic aromatic hydrocarbons (PAHs) were investigated in the leaf plants of Al-Zubair city. A total of 14 samples of conocarpus lancifolius plant leaf were collected and analyzed for their heavy metals and PAHs content using inductively coupled plasma mass spectrometry (ICP-MS) and a 7890 Agilent capillary gas chromatograph (GC) respectively. Bioaccumulation factor calculation revealed the highest pollution of heavy metals , due to the activity of a petrochemical in the area. The diagnostic ratio of Ant/(Phe+Ant), BaA/BaA+Chr), In/(In+BghiP), Flu/Pyr, FlA/FlA+Pyr), FlA/FlA+Pyr), ∑LMW/∑HMW are commonly used for determining the origin and source of PAHs in various environmental media. The diagnostic ratio indicated the anthropogenic origin. PAHs with five-to-six membered rings were dominant in the plant leaf, which likely results from anthropogenic activities. The leaves of C. lancifolius have a preponderance of high molecular weight PAHs compared to low molecular weight PAHs, indicating a combustion origin (car exhaust, petroleum emissions, and fossil fuel). C. lancifolius leaves are a reliable indication of atmospheric PAHs absorption. The background level of heavy metals in the city (or the near environment) is in the order of Fe > Cu > Ni > Cr. On the other hand, the bioaccumulation in plant leaves showed greater tendencies as follows: Co>Cd>Zn=As>Cu>Mn>Ni>Pb>Cr>Fe. Cobalt showed high bioaccumulation, indicating strong uptake of Co by plant leaves. These findings point to human activity and car emissions as the primary sources of roadside vegetation pollution in Al-Zubair city.

A Study on the Structural Stability of Nozzle Manufactured with 5-axis Machining (5축 가공으로 제작한 노즐의 구조 안정성에 관한 연구)

  • Changwook Lee;Yongseok Park;DuckYong Jo;Seong Man Choi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.44-51
    • /
    • 2022
  • In this study, 5-axis machining was proposed as a method for manufacturing a nozzle with a curved shape, and flow analysis and structural analysis were used for structural validation of the manufactured geometry. The program used for CFD obtained the internal temperature and pressure distribution of the nozzle using STAR-CCM+ and used it as the boundary condition for structural analysis. For structural analysis, the commercial program NASTRAN was used, and stress was calculated using the von-mises technique. Based on the maximum stress value generated, the safety margin was 0.78 and the safety margin of the bearing stress was 46.8. In addition, the creep life was calculated as 9.97 x 1012 hours using the Larson-Miller parametric method and applying the maximum stress value of 187 MPa and the exhaust gas perfectly mixed temperature of 463 K.

Development of unmanned hovercraft system for environmental monitoring (환경 모니터링을 위한 무인 호버크래프트 시스템 개발)

  • Sung-goo Yoo;Jin-Taek Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.525-530
    • /
    • 2024
  • The need for an environmental monitoring system that obtains and provides environmental information in real time is increasing. In particular, in the case of water quality management in public waters, regular management must be conducted through manual and automatic measurement by law, and air pollution also requires regular measurement and management to reduce fine dust and exhaust gas in connection with the realization of carbon neutrality. In this study, we implemented a system that can measure and monitor water pollution and air pollution information in real time. A hovercraft capable of moving on land and water simultaneously was used as a measurement tool. Water quality measurement and air pollution measurement sensors were installed on the hovercraft body, and a communication module was installed to transmit the information to the monitoring system in real time. The structure of a hovercraft for environmental measurement was designed, and a LoRa module capable of low-power, long-distance communication was applied as a real-time information transmission communication module. The operational performance of the proposed system was confirmed through actual hardware implementation.

A Study on Livestock Odor Reduction Using Water Washing System (수세탈취시스템을 이용한 축산악취저감에 관한 연구)

  • Jeon, Kyoung-Ho;Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Kim, Jae-Hwan;Kwag, Jung-Hoon;Kang, Hee-Sul;Jeong, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • The odor problem in the livestock is increasing by 7% annually. Most importantly, the livestock odor problem in swinery accounts for the maximum ratio (54%). In this study, we reviewed the possibility of deodorizing swinery using an odor reduction device that can be used with the water washing system. First, the study confirmed that the solubility of odor gas, which was hydrogen sulfide, was very low regardless of the contact time with solvent, but the solubility of methyl mercaptan was found to increase along with the increase in time. The solubility of other odor gases, such as dimethyl sulfide, dimethyl disulfide and ammonia, was considerably high. Consequently, it is considered that if the odor reduction device for the water washing system deodorization is used in a swinery, the time during which the exhaust gas is in contact with usable water must be extended, or solvent quantity must be expanded. However, it is predicted that although hydrogen sulfide is easily generated in the anaerobic condition, it is difficult to expect high odor reduction efficiency because this gas has low solubility in water, especially in case it is used in the deodorization of the water washing system. The result of the solubility experiment using the bench-scale device practically manufactured represented the higher odor reduction ratio than expected. This result was possible because the removal efficiency of dust particles could be reached up to 93%. Therefore, it is judged that also the odor gas absorbed on dust particles could be removed by removal of dust. Consequently, it is expected that the higher order reduction ratio will be possible by structural improvement for increasing contact with water and odor gas.

Application of Geostatistical Methods for the Analysis of Groundwater Contamination in Pusan (부산지역 지하수 오염현황 분석을 위한 지구통계 기법의 응용)

  • 정상용;강동환;박희영;심병완
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.247-261
    • /
    • 2000
  • The geostatistical analyses for the chemical components of pH, TS, KMnO4 Demand, Cl, SO$_4$ and NO$_3$-N are carried out to understand the groundwater contamination in Pusan. The average values of each component are 7.2 for pH, 336.4mg/$\ell$ for TS, 2.3mg/$\ell$ for KMnO$_4$ Demand, 44.3mg/$\ell$ for Cl, 36.0mg/$\ell$ for SO$_4$, and 4.6mg/$\ell$ for NO$_3$-N. The ratios over the drinking standard of each component are 0.34% for pH, 2.27% for TS, 1.55% for KMnO$_4$ Demand, 1.59% for Cl, 0.57% for SO$_4$, and 3.7% for NO$_3$-N. The highest ratio of NO$_3$-N results from the municipal sewage and exhaust gas of vehicles. The isopleth maps of 6 chemical components show that the high values of groundwater contamination come from the inland of Pusan, and that some high values appear at the coastal area. The isopleth maps of Cl and SO$_4$ related with seawater intrusion also show that the high values appear only at the particular coastal area, not at the whole area. On the isopleth maps of Cl and SO$_4$, the anomalies of the concentration contours were compared with the directions of two large fault zones, the Ilkwang Fault and the Dongrae Fault. Apparently, they don't have the particular correlation. Therefore, it is concluded that the main source of groundwater contamination in Pusan is not the seawater, but the municipal sewage and other sources such as the exhaust gas of vehicles, the contaminated surface water, the waste water of factories, and the leachate of waste landfills.

  • PDF

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service (산림청 지원사업에 따라 보급된 산업용 목재펠릿보일러에서 목재펠릿 연소 시 배출되는 일산화탄소와 질소산화물의 배출 특성 및 배출계수 분석)

  • Kang, Sea Byul;Choi, Kyu Sung;Lee, Hyun Hee;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.597-609
    • /
    • 2018
  • Korea Forest Service has supplied 76 industrial wood pellet boilers from 2011 to 2015 through subsidy programs. Since carbon monoxide (CO) and nitrogen oxides ($NO_x$) generated during boiler combustion are substances that lead to death in the case of acute poisoning, it is very important to reduce emissions. Therefore, the CO and $NO_x$ emission values of 63 boilers excluding the hot air blower and some boilers initially supplied were analyzed. The emission factor was also calculated from the measured exhaust gas concentration (based on exhaust gas $O_2$ concentration of 12%). The average value of CO emitted from industrial wood pellet boilers was 49 ppm and it was confirmed that the CO concentration was decreasing as the years passed. The emission factor of CO was 0.73 g/kg. The average value of $NO_x$ emitted from industrial wood pellet boilers was 67 ppm and the emission factor of $NO_x$ was 1.63 g/kg. Unlike CO, there was no tendency to decrease according to the installation year. Both CO and $NO_x$ measurements met the limits of the Ministry of Environment. These $NO_x$ emission factors were compared with the $NO_x$ emission factors produced by certified low $NO_x$ burners. The $NO_x$ emission factor of industrial wood pellet boilers was about 1.9 times that of certified low $NO_x$ LNG combustors and about 0.92 times that of coal combustion.

The Characteristics Study of Vehicle Evaporative Emission and Performance according to the Bio-Fuel Application (바이오 연료 적용에 따른 차량 증발가스 및 성능특성 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Kim, Sin;Park, Cheon-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.874-882
    • /
    • 2017
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotiv e and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward three main issues : evaporative, performance, air pollution. In addition, researcher studied the environment problems of the bio-ethanol, bio-butanol, bio-ETBE (Ethyl Tertiary Butyl Ether), MTBE (Methyl Tert iary Butyl Ether) fuel contained in the fuel as octane number improver. The researchers have many dat a about the health effects of ingestion of octane number improver. However, the data support the con clusion that octane number improver is a potential human carcinogen at high doses. Based on the bio-fuel and octane number improver types (bio-ethanol, bio-butanol, bio-ETBE, MTBE), this paper dis cussed the influence of gasoline fuel properties on the evaporative emission characteristics. Also, this p aper assessed the acceleration and power performance of gasoline vehicle for the bio-fuel property. As a result of the experiment, it was found that all the test fuels meet the domestic exhaust gas standards, and as a result of measurement of the vapor pressure of the test fuels, the bio - ethanol : 15 kPa and the biobutanol : 1.6 kPa. thus when manufacturing E3 fuel, Increasing the biobutanol content reduces evaporation gas and vapor pressure. In addition, Similar accelerating and powering performance was shown for the type of biofuel and when bio-butanol and bio-ethanol were compared accelerated perf ormance was improved by about 3.9% and vehicle power by 0.8%.

Analysis of all PCB Congeners in Air Samples by HRGC/HRMS (대기 시료 중 PCBs 전 이성체 분석에 관한 연구)

  • Kim, Kyoung-Soo;Song, Byung-Joo;Kim, Jong-Guk
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.309-319
    • /
    • 2003
  • This study was performed to describe analysis method of 209 PCB congeners in ambient air samples. The samples were collected by high volume air sampler in Chonju city. Extracted samples were cleaned by silicagel cleanup modified with sulfuric acid and activated carbon cleanup processing. The cleaned samples were analyzed by high resolution gas chromatography and high resolution mass spectrometry (HRGC/HRMS) with DB-5 column (60 m, 0.25 mm i.d., 0.25 m film thickness) to analyze the 209 kinds of PCB congeners. PCBs levels of air samples were detected to the range between 0.003 and $0.163pg-TEQ/m^3$. The PCBs congener of 162 kinds were detected in samples analysed using DB-5 column and 37 kinds peaks were overlapped with congeners more than one. It is difficult to isolate PCB 118/106 and PCB 105/127 in coplanar PCB, so it is likely to overestimate the concentration.. The distribution of coplanar-PCB congeners in origin source samples (Kanechlor and exhaust gas from incinerator) was compared with that in air samples, and PCB 81, PCB 77, PCB 126, and PCB 169 were higher in incinerator samples.

De-NOX evaluation of SCR catalysts adding vanadium-graphene nanocomposite (바나듐 담지된 그래핀 나노복합체를 첨가한 SCR 촉매의 제조 및 활성 평가)

  • Jeong, Bora;Lee, Heesoo;Kim, Eok-Soo;Kim, HongDae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.252-256
    • /
    • 2015
  • Nitrogen oxides ($NO_X$) was emitted from flue gas of stationary sources and exhaust gas of mobile sources, can leads to various environments problems. Selective Catalysts Reduction (SCR) is the most effective $NO_X$ removal system. Commercial $V_2O_5-WO_3/TiO_2$ catalysts, usually containing $V_2O_5$ 0.5~3 wt%, $WO_3$ 5~10 wt%, and $V_2O_5$ is active in the reduction of $NO_X$ but also in the desired oxidation of $SO_2$ to $SO_3$. To reduce the amount of vanadium, using graphene matrix supported vanadium to synthesize nanocomposite. Then, we fabricated to 1 inch honeycomb type of SCR catalysts adding graphene-vanadium nanocomposite. The chemical-physical characteristics and the catalytic activity were performed by XRD, XRF, BET and Micro-Reactor (MR). As a result, the De-NOX performance was showed, similar to the commercial catalyst activity as 77.8 % and using nanocomposite catalyst as 77.1 % at $350^{\circ}C$.

Parametric Analysis of the Performance of Water Recirculated Oxy-Fuel Power Generation Systems (물을 재순환하는 순산소 발전 시스템의 작동조건 변화에 따른 성능해석)

  • Park, Byung-Chul;Sohn, Jeong-Lak;Kim, Tong-Seop;Ahn, Kook-Young;Kang, Shin-Hyoung;Lee, Young-Duk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • In this study, an ideal water-recirculated oxy-fuel power generation system is proposed. The results of parametric studies of the performance characteristics of the system are discussed. For a given choice of the turbine inlet temperature, the turbine, which produces power, can be either a gas or a steam turbine. For maximum efficiency, the turbine inlet temperature is selected as the level of state-of-the-art gas turbines and the reheat cycle may be adopted not only to enhance the turbine power but also to maintain dryness of the water with a turbine exhaust temperature that is as high as possible. To obtain a low condensation temperature for a high purity of $CO_2$, a relatively low pressure expansion process may be added. Finally, the performance of the water-recirculated oxy-fuel power generation system is discussed with reference to various operating parameters and system configurations. The optimal operating conditions for high performance and a high purity of $CO_2$ are proposed.