• Title/Summary/Keyword: Exhaust Gas

Search Result 2,007, Processing Time 0.029 seconds

An Experimental Study on Optimization of $NH_3$ Injection for the Selective Catalytic Reduction(SCR) System (선택적 환원 촉매(SCR)에서 암모니아($NH_3$) 분사량 최적화에 대한 실험적 연구)

  • Jang, Ik-Kyoo;Yoon, Yu-Bin;Park, Young-Joon;Lee, Seang-Wock;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2874-2879
    • /
    • 2008
  • The Selective catalytic reduction(SCR) system is a highly-effective device of $NO_x$ reduction for diesel engines. Generally, the ammonia($NH_3$) generated from a liquid urea-water solution is used for the reductant. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency becomes lower, due to temperature window. And space velocity also affects to $NO_x$ conversion efficiency. This paper reviews a laboratory study to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the SCR system. The maximum conversion efficiency of $NO_x$ was indicated when the $NH_3$ to $NO_x$ ratio was 1.2 and the space velocity was $60,000\;h^{-1}$. The results of this paper contribute to improve overall $NO_x$ reduction efficiency and $NH_3$ slip.

  • PDF

Design of Charge and Discharge Monitoring System for Secondary Batteries of Hybrid Electric Vehicle (하이브리드 전기자동차용 2차전지 충방전 모니터링 시스템 설계)

  • Lee, Jun-Ha;Lee, Kang-Ho;Choi, Jong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.157-161
    • /
    • 2010
  • Most of air pollution in a metropolis is the result of exhaust gas emissions from automotive vehicles, and the world-wide regulation against environmental pollution is becoming more strict. Moreover the demand on development and supply of an environment-friendly automobile is increasing and the market share about that is expected to grow rapidly in this time of high oil price. The secondary batteries the most important component to store the electrical energy in hybrid electric vehicle. It needs to the higher power characteristics to emit the energy instantaneous. In this paper, we proposed the system to monitor reliably the charge and discharge states of the secondary batteries for hybrid electric vehicle. The material is about SW and HW module the software and hardware module mounted on the charge and discharge system and the monitoring system to control the charge and discharge performance effectively.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

The Study on In-situ Diagnosis of Chemical Vapor Deposition Processes (화학기상증착 진공공정의 실시간 진단연구)

  • Jeon, Ki-Moon;Shin, Jae-Soo;Lim, Sung-Kyu;Park, Sang-Hyun;Kang, Byoung-Koo;Yune, Jin-Uk;Yun, Ju-Young;Shin, Yong-Hyeon;Kang, Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • The diagnosis studies of the process of chemical vapor deposition were carried out by using in-situ particle monitor (ISPM) and self-plasma optical emission spectroscopy (SPOES). We used the two kinds of equipments such as the silicon plasma enhanced chemical vapor deposition system with silane gas and the borophosphosilicate glass depositon system for monitoring. Using two sensors, we tried to verify the diagnostic and in-situ sensing ability of by-product gases and contaminant particles at the deposition and cleaning steps. The processes were controlled as a function of precess temperature, operating pressure, plasma power, etc. and two sensors were installed at the exhaust line and contiguous with each other. the correlation of data (by-product species and particles) measured by sensors were also investigated.

Performance Analysis of Absorbent for Post-combustion CO2 Capture by Regeneration (연소 후 CO2 포집을 위한 흡수제의 재생반응에 의한 성능 해석)

  • KIL, TAEHYOUNG;LEE, DONGHO;JO, SUNGHO;YI, CHANGKEUN;PARK, YEONGSEONG;RYU, HOJUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.83-94
    • /
    • 2016
  • Performance of absorbent for post-combustion $CO_2$ capture was measured and discussed. Fully saturated fresh absorbent (P2-15F) and absorbents sampled from absorption and regeneration reactor of continuous $CO_2$ capture process, P2-15A, P2-15R, respectively, were used as representative absorbents. Small scale fluidized bed reactor (0.05 m I.D., 0.8 m high) which can measure exhaust gas concentration and weight change simultaneously was used to analyze regeneration characteristics for those absorbents. Exhausted moles of $CO_2$ and $H_2O$ were measured with increasing temperature. $H_2O/CO$ ratio and working capacity were determined and discussed to confirm reason of reactivity decay after continuous operation. Moreover, possibility of side reaction was checked based on the $H_2O/CO_2$ mole ratio. Finally, suitable regeneration temperature range was confirmed based on the trend of working capacity with temperature.

The Study on Development of Low NOx Combustor with Lean Burn Characteristics for Microturbine (희박 예혼합 연소를 이용한 마이크로터빈의 저공해 연소기 개발에 관한 연구)

  • Yoon, Jeong-Jung;Lee, Heon-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.63-72
    • /
    • 2003
  • In order to reduce NOx emissions in the 20kW class microturbine under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and high pressure. Theair from a compressor with the pressure of 2.5bar, 3.0bar, 3.5bar was supplied to the combustor with the temperature 560K through the air preheat-treatment. The sampling exhaust gas was measured at the immediate exit of the combustor. For the effect of temperature on NO and CO emissions, though NOx were increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx were increased and CO was decreased also. NOx were decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratio of 0.10 to 0.16 in the lean region. NOx were increased with increasing equivalent ratio, but CO was decreased as an influence of flame temperature. CFD work with an appropriate combustion model predicated a complicated swirling flow pattern in the combustor, and also produced a numerical value of NOx and CO emissions which was to be compared with the experimental one. As the results of this study, NOx are expected to be reduced to less than 42ppm at 15% O2 when operated at the design condition of the 20kW class microturbine.

  • PDF

Quantification of Glycerol by Malachite Green Fading Phenomenon: Application in Reaction By-Product of Biodiesel (말라카이트 그린의 색엷음 현상을 이용한 글리세롤의 정량: 바이오디젤 내 반응물 분석의 적용 가능성)

  • Lee, Mi-Hwa;Lee, Young-Chul;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.471-476
    • /
    • 2011
  • Nowadays biodiesel (fatty acid methyl ester, FAME) has been becoming an important issue as a desired alternative of energy products because of non-toxic, biodegradable properties, and lower exhaust emissions. During esterification of fatty acids or transesterification of oils and fats with short chain alcohols by the alkali-catalyzed methanolysis, FAME and unrefined glycerol are generated. Quantification of glycerol as a by-product is important because of a determinant of biodiesel quality. However, the glycerol analysis by gas chromatography (GC) method has laborious works with sample preparation, long time and cost of sample analysis. Thus, there is a need to analyze glycerol more simply. Herein we demonstrate that the colorimetric assay for glycerol analysis conducted by UV-vis spectrophotometer at the wavelength 617 nm whose peak is maximum intensity of malachite green, resulting in the red-shift occurred proportionally as a function of glycerol amount. Thus, it is considered the solvent media for malachite green fading for biodiesel production: (1) water, (2) MeOH, and (3) EtOH. The resulting findings show that the peak intensity at 617 nm in glycerol-malachite green mixture had a relationship between glycerol concentration and degree of peak shift as increase in pure glycerol concentration approximately at pH 7.0. However, when it was measured the unrefined glycerol concentration by diluting and adjusting with water to buffer (pH 7.0), it was not observed the absorption peak at 617 nm because of impurities and OH ions. In case of glycerol from biodiesel production factories, glycerol concentration could be successfully measured.

Numerical Study of Impact for Particulate Matter Reduction Device According to Installation of Perforated Plate and Mixer on Marine Diesel Engine (선박용 디젤엔진의 미세먼지저감 장치에 다공판과 믹서의 장착이 미치는 영향에 대한 수치해석적 연구)

  • Yun, Byoungkyu;Cho, Sanghyun;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.968-973
    • /
    • 2019
  • This study presents the characteristics of a pressure drop and uniformity index for a particulate matter reduction device with a perforated plate and mixer for marine diesel engines. The perforated plate and mixer equipped on the particulate matter reduction device induce an increase of exhaust gas reduction performance by increasing the uniformity index. Whereas, the perforated plate induces pressure drop increases in the particulate matter reduction device. Therefore to calculate the effect of the uniformity index and pressure drop of the perforated plates and mixer, this study combines several cases using five types of perforated plates and one type of mixer. Consequently, these results were analyzed to determine the optimized type and position of the perforated plate and mixer.

A Study on Indoor Environment Performances of Power Yacht in Summer Season (여름철 파워요트 실내환경 성능에 관한 연구)

  • Lee, Han-Seok;Doe, Guen-Young;Lim, Duck-Min;Kim, Hak-Chul
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.175-180
    • /
    • 2009
  • In this study, the basic data were collected for improving the amenity of indoor environment of a super yacht and the performance of indoor environment was analyzed by utilizing measured data during summer period. Through the results of examination, the following conclusions are drawn. 1) It is estimated that, in case of closing the door of Saloon connected with outside, there is little inflow of exhaust gas, but when the door is open, the indoor-air might be polluted so fast. Therefore, it is necessary to make a counter plan about the method of ventilation and amount of ventilation to keep the indoor aerial environment agreeable. 2) It is urgent to conceive countermeasure against engine noise because the noise level of all rooms exceeds 60dB, which is regulation of noise for protecting crew established in ship's classification, during the sailing. 3) State cabin and Guest cabin are super cooled by operating air conditioner exceeding agreeableness extent and it is needed to prevent them.

The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel Using a Rapid Compression Machine at Low Temperature Combustion Regime (저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구)

  • Song, Jae Hyeok;Kang, Ki Joong;Yang, Zheng;Lu, XingCai;Choi, Gyung Min;Kim, Duck Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.32-41
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition delay time of n-heptane and n-butanol binary fuel. The $O_2$ concentration in the mixture was set to 9-10% to make high exhaust gas recirculation( EGR) rate condition which leads low NOx and soot emission. Experiments were performed using a rapid compression machine(RCM) at compressed pressure 20bar, several compressed temperature and three equivalence ratios(0.4, 1.0, 1.5). In addition, a numerical study on the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species in the combustion process. The results showed that the ignition delay time increased with increasing the n-butanol fraction due to a decrease of oxidation of n-heptane at the low temperature. Moreover, all of the binary fuel mixtures showed the combustion characteristics of n-heptane such as cool flame mode at low temperature and negative-temperature-coefficient(NTC) behavior. Due to the effect of high EGR rate condition, the operating region is reduced at lean condition and the ignition delay time sharply increased compared with no EGR condition.