• Title/Summary/Keyword: Exhaust Flow Controller

Search Result 15, Processing Time 0.023 seconds

Development of Differential Exhaust Flow Controller using One Chip Microcontroller (단일칩 마이크로컨트롤러를 이용한 차압식 유량제어기의 개발)

  • Park, Chan-Won;Kim, Hyun-Sik;Joo, Yong-Kyu
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.89-94
    • /
    • 2002
  • In this paper, a Exhaust Flow Controller (EFC) technology for uniform application of film coater and developer device is introduced that spread and remove photo resister at semiconductor manufacturing process. Because developed EFC device uses differential pressure sensing method as a differential flow meter and embodied smart A/D conversion by using a one chip microprocessor and devised by feedback Servo control, It has shown excellent performance and stability evaluation, as maximum 2000L/min flow, capability of installation to actual semiconductor equipment.

  • PDF

Development of Exhaust Fan with an Embedded Controller for Windowless Swine Housing (무창돈사를 위한 컨트롤러 일체형 환기팬 개발)

  • Kim, Woong
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • The purpose of this study was to analyze temperature distribution characteristics using a model swine housing for temperature sensor adjustable positioning and developed a sensor and controller embedded exhaust fans utilizing ICT fusion technology for windowless swine housing. Temperature measured by the sensor attached on the exhaust fan was also determined that there is no problem, the temperature is located in the upper fan given the measured errors shown in the 1℃ temperature difference between the lower temperature than the other positions in the model swine housing. The performance of the exhaust fan at maximum output was found to be 1920rpm, air flow rate 125㎥/min. When the open area ratio of 70% one proper air volume of the exhaust fan was found to be 75㎥/min, 60pa. Maximum efficiency in all of the output of the exhaust fan is exhibited at about 70% open area ratio of the damper. The number of revolution of the exhaust fan was 1920rpm when the output was a maximum of 100%. AC output phase of the pulse duty ratio change of the controller was shown to change without delay. It was determined that the instant fan speed control is possible.

Development of Exhaust Flow Controller for P/R Coater Process (P/R Coater공정용 Exhaust Flow Controller의 개발)

  • Park, Chan-Won;Kim, Hyun-Sik;Joo, Yong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2185-2187
    • /
    • 2002
  • 본 연구에서는 반도체 제조공정에서 photo resister를 도포하고 제거하는 coater와 developer 장치에서 도포막의 균일화를 위한 배기장치의 정밀한 유량제어기술을 소개 하고자 한다. 개발된 배기 제어장치는 차압식 유량계로서 차동 압력센싱 방식을 이용하고 One chip microprocessor로 A/D변환과 피드백 서보제어로 장치를 구현하였으며 제어 유량은 최대 2000${\ell}$/min로서 개발 후 성능과 안정성 평가가 우수하여 실제장비에의 장착이 가능하였다.

  • PDF

An Experimental Study on the Development of Muffler with Cotroller Sensing Exhaust-gas Pressure in Exhaust System (배기계의 배기압 감응형 제어 머플러 개발에 관한 실험적 연구)

  • Lee, Hae-Chul;Seog, Dong-Hyun;Lee, Joon-Seo;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.892-898
    • /
    • 2000
  • This study is on the development of a new muffler composed of a valve system using an elasticity or spring. The valve system using the elasticity of spring is set along the exhaust-gas flow and designed to work itself alone the driving condition of a engine. By that reason the engine capacity is so enlarged that a muffler with controller sensing exhaust-gas pressure is able to be satisfied to noise reduction and- power enlargement more than conventional muffler. The purpose of this study is to develope the new muffler which has more noise reduction and power enlargement than conventional muffler and electric-control muffler.

  • PDF

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

Engine Modeling and Validation for Control System Design of a Gaseous-fuel Engine (기체연료엔진의 제어시스템 설계를 위한 엔진 모델링 및 검증)

  • 심한섭;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.7-17
    • /
    • 2003
  • Highly accurate control of an air-fuel ratio is very important to reduce exhaust gas emissions of gaseous-fuel engines. In order to achieve this purpose, a precise engine model is required to estimate engine performance from the engine design process which is applied to the design of an engine controller. Engine dynamics are considered to develop a dynamic engine model of a gaseous-fuel engine. An effective air mass ratio is proposed to study variations of the engine dynamics according to the water vapor and the gaseous-fuel in the mixture. The dynamic engine model is validated with the LPG engine under steady and transient operating conditions. The experimental results in the LPG gaseous-fuel engine show that the estimation of the air flow and the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal engine model.

Development of Ventilator without Power using Air Flow (공기흐름을 이용한 무동력 환풍장치 개발)

  • Kim, Bum-Suk;Kwon, Taek-Joo;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The studies on the efficient ventilator to reduce fire and save energy have been proceeded actively. The purpose of this paper is to design a ventilator used in residential wood stove. The ventilator consists of rotation and support part, and it is operated by natural wind without power. The shape of rotation part of the ventilator is like airfoil to reinforce pressure drop. We designed direction controller for the rotation part to track the direction of wind continuously. The rotation and support part have point-contact each other to minimize a friction. We verify the properties of the proposed ventilator though simulation and experiment. The results show the proposed ventilator can exhaust safely combustion gas of the stove more than other ventilator.

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

Sensorless Starting Method and Fuel Pressure Control of BLDC Motor for Fuel Pump of Vehicle (자동차 연료 펌프용 BLDC 모터의 센서리스 기동 및 연료 압력 제어)

  • Chang, Jin-Wook;Yoon, Duck-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.114-121
    • /
    • 2013
  • High efficiency operation is required for motors of vehicle to increase fuel efficiency due to the regulation of exhaust gas. This paper presents a control method of fuel pressure to increase fuel efficiency and a sensorless control method of BLDC motor to get higher efficiency than conventional brushed DC motor. Initial rotor position of BLDC motor is detected from current value that is occurred by test voltage pulse and rotor is accelerated by defined sequence to enter sensorless operation mode. The algorithm to control flow rate of fuel pump uses PI controller that is control motor speed to maintain the target fuel pressure commanded by ECU.