• Title/Summary/Keyword: Exhaust Emission

Search Result 1,074, Processing Time 0.022 seconds

Effect of Ethanol-gasoline Blending Ratio on Lean Combustion and Exhaust Emissions Characteristics in a SI Engine Fueled with Bioethanol (바이오에탄올 SI 엔진에서 에탄올-가솔린 연료 혼합비율에 따른 희박연소 및 배기 특성)

  • Yoon, Seung-Hyun;Kim, Dae-Sung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • Lean combustion and exhaust emission characteristics in a ethanol fueled spark-ignited engine according to ethanol-gasoline fuel blending ratio were investigated. The test engine was $1591cm^3$ and 10.5 of compression ratio SI engine with 4 cylinders. In addition, lambda sensor system was connected with universal ECU to control the lambda value which is varied from 1.0 to 1.5. The engine performance and lean combustion characteristics such as brake torque, cylinder pressure and rate of heat release were investigated according to ethanol-gasoline fuel blending ratio. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), nitrogen oxides ($NO_x$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque, cylinder pressure and the stability of engine operation were increased as ethanol blending ratio is increased. Brake specific fuel consumption (BSFC) was increased in higher ethanol blending ratio while brake specific energy consumption (BSEC) was decreased in higher ethanol blending ratio. The exhaust emissions were decreased as ethanol blending ratio is increased under overall experimental conditions, however, some specific exhaust emission characteristics were mainly influenced by lambda value and ethanol-gasoline fuel blending ratio.

Study on the assessment methodology for the PM10 generated from tire-dust considering the axle load of the truck according to the loading method (화물차 적재 방식에 따른 축 하중을 고려한 타이어 먼지 중 PM10 발생량 평가기법 연구)

  • Lee, Eunjeong;Lee, Heekwan
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.45-54
    • /
    • 2022
  • Recently, regulations on automobile exhaust gas emission are being strengthened. Accordingly, automobile exhaust gas emissions are expected to decrease and continue to decrease. On the other hand, many countries do not yet consider the emission of non-exhaust air pollutants from automobiles as important. Automobile non-exhaust substances are classified into three categories: tire dust emissions, brake wear emissions, and road scattering dust. In particular, in the case of tire dust, research results exist that pollutant emissions increase as the weight of a vehicle increases. Since the weight of trucks varies according to the load and the load along the axles is also different, it can be expected that the emission of PM10 from the tire dust will be different depending on the loading method. Therefore, this study was conducted on the amount of PM10 generated in tire dust considering the axle load of the truck according to the loading method. However, it was confirmed that the total amount of PM10 was less than that all loads are loaded in the front or rear when the load was evenly distributed in the front and rear of the cargo compartment. In particular, if the load is distributed evenly in the front and back of the cargo compartment and the load in the front part is divided into 2 to 6 and loaded, as the number of divided loading increases the amount of PM10 generated decreases. And when the load is divided into 6 pieces, the total amount of PM10 generated is 0.3952g, the minimum value. If the load is divided into 6 or more and loaded evenly, the total PM10 generated continuously increases and converges to about 0.3964g.

Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines(Second Paper) (4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구)

  • 윤건식;윤영환;우석근;신승한;서문진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.246-259
    • /
    • 2003
  • For predicting the performances of the four stroke cycle spark ignition engines. the gas behavior in the engine system has been analyzed. The calculations consist of two parts. the calculation of the gas behavior in the intake and exhaust systems which was described in the first paper, and the calculation of the variations of gas properties inside the engine cylinders. In this Paper the simulations for the in-cylinder processes were described for the MPI engine, naturally aspirated and turbocharged engines with a carburettor. With the combination of the calculations of the intake and exhaust systems and the calculation of the in-cylinder processes. the predictions of the engine Performances and the exhaust emission characteristics were carried out. And the result showed good agrements with the experimental results under wide range of operating conditions.

A Study on Combustion and Characteristics of Exhaust Gas Properties for Combustion Chamber (연소실 형상에 따른 연소 및 배기가스 배출물 특성에 관한 연구)

  • 김대열;한영출;주신혁;박병완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents characteristics of combustion and exhaust gas properties according to variation of the combustion chamber for economy and emissions standards. In order to use combustion and exhaust gas properties data, it is necessary to build some data base, which use cylinder pressure sensor and emission tester. A feasibility and necessity of combustion pressure based cylinder spark timing control has been examined. So, this was obtained the coefficient of variation(COV) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable combustion chamber can be improved combustion stability and be reduced exhaust emission.

Study on Engine Performance and Characteristics of Exhaust Gas Properties according to various EGR Feeding Methods in LPLi Engine (EGR 유입방식에 따른 LPLi 엔진 성능 및 배기 배출물 특성에 관한 연구)

  • 곽호철;명차리;박심수;천동필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.7-14
    • /
    • 2003
  • Recently, LPG has been considered as more environmental friendly fuel than liquid fuels for vehicles. However because LPLi engine has the strong point that not only increases the volumetric efficiency and cold startability, but also decreases unburned hydrocarbon exhaust emission in warm-up condition, much attention has moved to development of the Liquid Phase LPG injection (LPLi) system from the mixer type LPG engine. To reduce exhaust NOx, this study investigated the effect of EGR with LPLi engine and determined optimized EGR feeding position and distribution. In addition, engine stability, performance, and exhaust emission level were evaluated.

An Investigation on the Emission Characteristics of Heavy-duty Vehicles using CNG and Diesel Fuel According to the Various Driving Cycles (다양한 주행모드에 따른 천연가스(CNG) 및 경유 사용 대형자동차의 배출가스 특성에 관한 연구)

  • Kim, Hyungjun;Eom, Myungdo;Kim, Jeongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.634-639
    • /
    • 2012
  • The contribution levels of emissions from the heavy-duty vehicles have been continuously increased. Among the exhaust emissions, NOx (nitric oxides) have a ratio of 73.2% and particle matters have a proportion of 61.8% in the heavy-duty vehicles. Also, natural gas vehicles have the 78.9% of total registered local buses in Korea. Therefore, the investigation on emission characteristics of heavy-duty vehicles using CNG and diesel fuel according to the various driving cycles was carried out in this study. In order to analyze the emission characteristics, the five kinds of buses by using CNG and diesel fuels with a after-treatment devices (DPF, p-DPF) was used and five test driving schedules were applied for analysis of emission characteristics in a chassis dynamometer. To analyze the exhaust emission, the exhaust emission and PM analyzers were used. From this study, it is revealed that diesel buses with after-treatment had reduced emission of CO, HC, PM but NOx. Also, NMHC emission of CNG bus have a higher level and NOx level was similar with diesel buses. In addition, emissions in NIER06 with slow average speed shows lowest levels compared to other test modes.

A Study on the Combustion and Exhaust Emission Characteristics with the Variations of Mixing and Air-fuel Ratio of Bio-ethanol - Gasoline in a SI Engine (SI엔진에서 바이오에탄올-가솔린 혼합율 및 공연비 변화에 따른 연소 및 배기배출물 특성에 관한 연구)

  • Yoon, Seunghyun;Ha, Sungyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.358-364
    • /
    • 2016
  • The combustion and exhaust emission characteristics in a spark ignition (SI) engine with various test fuels (bioethanol - gasoline blends) and air-fuel ratio were investigated in this research. To investigate the influence of the excess air ratio and ethanol blends on the combustion characteristics such as the cylinder pressure, rate of heat release (ROHR), and fuel consumption rate were analyzed. In addition, the reduction effects of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and oxides of nitrogen (NOx) were compared with those of neat gasoline fuel under the various excess-air ratios. The results showed that the peak combustion pressures and the ROHR of bioethanol fuel cases were slightly higher than those of gasoline fuel at all test ranges and fuel ratio. As compared with gasoline fuel (G100) at each given excess air ratio, BSFC of bio-ethanol was increased. The CO, HC, NOx emissions of bio-ethanol blends were lower than those of gasoline fuel under overall experimental conditions.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축착화 엔진에서 질소와 이산화탄소의 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.171-178
    • /
    • 2008
  • The combustion and exhaust emission characteristics were investigated in an DME fueled HCCI engine. Carbon dioxide, nitrogen and mixed gas, which was composed of carbon dioxide and nitrogen, were used as control parameters of combustion and exhaust emission. As the oxygen concentration in induction air, which was occurred by carbon dioxide, nitrogen and mixed gas, was reduced, the start of auto-ignition was retarded and the burn duration was extended due to obstruction of combustion and reduction of combustion temperature. Due to these fact, indicated mean effective pressure was increased and indicated combustion efficiency was decreased by carbon dioxide, nitrogen and mixed gas. In case of exhaust emission, hydrocarbon and carbon monoxide was increased by reduction of oxygen concentration in induction air. Especially, partial burning was appeared at lower than about 18% of oxygen concentration by supplying carbon dioxide. However it was overcome by intake air heating.

A Study on Application of Mono-Ether Group(Ethylene Glycol Mono-n-Butyl Ether) Oxygenated Fuel in an IDI Diesel Engine (간접분사식 디젤기관에서 Mono-Ether 계열 함산소연료(Ethylene Glycol Mono-n-Butyl Ether)의 적용에 관한 연구)

  • Choi, S.H.;Oh, Y.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.15-20
    • /
    • 2005
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for an indirect injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has four kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission of EGBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel(10vol-%) and cooled EGR method(10%).

  • PDF