• Title/Summary/Keyword: Exhaust Efficiency

Search Result 831, Processing Time 0.03 seconds

The Study for Idle Fuel Consumption of a Hydrogen-Blended Natural Gas Engine (수소 혼합 천연가스 연료 엔진의 아이들 연비에 관한 연구)

  • Lee, Sun-Youp;Kim, Young-Min;Lee, Jang-Hee
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.171-176
    • /
    • 2010
  • Using a hydrogen blended compressed natural gas (HCNG) as a fuel for IC engines has a significant meaning in terms of achieving a reduction of automotive exhaust emissions as well as preparing for an upcoming hydrogen economy by constructing hydrogen infrastructure. In addition, a HCNG engine has higher thermal efficiency than a CNG engine, which is another advantage that makes HCNG fuel considered as a future alternative for natural gas. Therefore, in this study, idling operation of a 11 litre HCNG bus engine was investigated in terms of fuel consumption rate and emissions characteristics. The results show that fuel consumption rate was decreased more than 20% by use of HCNG and all the emissions were significantly reduced in idling condition.

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

저온기 육용계사의 적정 환기체계 구명

  • 이덕수;나재천;최희철;송준익;이상진;김형호
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2002.11a
    • /
    • pp.108-109
    • /
    • 2002
  • The study was carried out to iind out the suitable ventilation system of the broiler house in winter season in Korea. Ammonia (NH$_3$-N) gas concentration (4.2ppm) of the system of pipe air inlet-forced chimney outlet was lower than that of the system of side wall inlet. The growth performance of broilers in the house equiped with pipe air inlet-chimney exhaust was higher than that of other ventilation systmes in which the average daily gain, feed efficiency and heat cost per head in the system of pipe air inlet-forced chimney excretion were 45.6g, 1.71 and 35.4 won per head, respectively. When the lengths of pipe air inlets were compared, the wind speed from the 4 meter-inlet was highest. The temperature of the broiler house equipped with the pipe air inlet system was higher (5.9 ∼ 7.7$^{\circ}C$) than that of the curtains in side wall Inlet system, in which the pipe air inlet system expects the lower heat cost.

  • PDF

A Study on the Performance Improvement in a V8 Type Turbocharged Intercooler D.I. Diesel Engine (V8형 터보차져 인터쿨러 직접분사식 디젤기관의 성능개설에 관한 연구)

  • 석동현;윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.118-127
    • /
    • 2004
  • The purpose of this study is experimentally to analyze that intake port swirl, injection system and turbocharger have an effect on the engine performance and the emission characteristics in a V8 type turbocharged intercooler D.I. diesel engine of the displacement 16.7ι, and to suggest the improvement of engine performance. Generally to enhance engine power, TCI diesel engine is put to practically use turbo-charged intercoler in order to increase boost efficiency which is cooled boost air. As results of considering the factors of the intake port of swirl ratio 2.25, compression ratio 17.5, re-entrant 8.5$^{\circ}$ combustion bowl, nozzle hole diameter ${\Phi}$0.33*3+${\Phi}$0.35*2, nozzle protrusion 3.18mm, injection timing BTDC 12$^{\circ}$CA and turbo charger (compressor 0.6A/R+46Trim, turbine 1.0A/R+57Trim) is the best in the full range of operating in the engine performance and the exhaust characteristics of NO$\_$x/ concentration. Therefore their factors are appropriated as intake system, injection and turbocharger system.

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

A Study on the Engine Performance and Emission Characteristics in a LP EGR System with Electronic Throttle Control (ETC를 적용한 저압 EGR시스템의 엔진성능 및 배출가스 특성에 관한 연구)

  • Park, Jun-Heuk;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.379-387
    • /
    • 2011
  • Research and development of LP EGR system for the performance improvement and emission reduction on diesel engine is proceeding at a good pace. LP EGR system seems to be helpful method to further reduce$NO_x$ emissions while maintaining PM emissions at a low level because the boost pressure is unchanged while varying EGR rate. This study is experimentally conducted on a 2.0L common rail DI engine at the medium load condition (2000 rpm, BMEP 1.0 MPa, boost pressure 181.3 kPa) that difficult to use large amount of EGR gas because of deteriorations of performance and fuel consumption. And we investigated the characteristics of performance and fuel consumption while varying EGR systems. The overall results using LP EGR system equipped with ETC identified benefits on reduction of PM and improvement of fuel consumption and thermal efficiency while keep the $NO_x$ level compared to HP EGR and LP EGR with back pressure valve.

Disposal and Waste-to-Fuel of Infected Poultry with Avian Influenza(AI) Using Thermal Hydrolysis Reaction (열가수분해 반응을 이용한 조류인플루엔자(AI) 감염 가금류의 사체처리 및 연료화)

  • Song, Chul-Woo;Kim, Nam-Chan;Jeong, Guk;Ryu, Jae-Keun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.49-57
    • /
    • 2016
  • In this study, a thermal hydrolysis technology was used to treat the poultry carcasses that were killed due to Avian Influenza (AI) occurrence, as well as to determine the possibility of fueling for the resultant products. Experimental results showed that the poultry carcasses were liquefied except for sand, and showed the optimum efficiency at $190^{\circ}C$ and operating time of 60 minutes. It has been shown that liquid products obtained after thermal hydrolysis has good conditions for fuel conversion since it had high carbon contents and calorific value, as well as low ash content. In addition, it was possible to operate the thermal hydrolysis facility by using only the waste heat generated in the combustion without injecting the auxiliary fuel, and the exhaust gas generated in the combustion has a small influence on the atmosphere.

Requirement Analysis of Efficiency, Reliability, Safety, Noise, Emission, Performance and Certification Necessary for the Application of Urban Air Mobility (UAM) (도심항공 모빌리티(UAM) 적용에 필요한 효율, 신뢰성, 안전성, 소음, 배기가스, 성능 및 인증의 요구도 분석)

  • Yun, Ju-Yeol;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.329-342
    • /
    • 2020
  • In this paper, we analyzed the requirements for the application of UAM, a new concept to solve the traffic congestion in large cities. First, the current domestic and foreign status of research and development related to UAM was investigated and the pros and cons and the time required for each mission radius were analyzed for various configurations of aircraft being commercialized. In addition, in order to analyze the market acceptance of the UAM, the individual's consciousness and reliability requirements were identified and safety requirements were analyzed through accident rate data for each aircraft type. Because it operates in a densely populated urban area, requirement analyses on noise and exhaust, which are environmental factors that can affect the community were performed, and requirements related to aircraft performance, certification standards, and airworthiness standards of FAA and EASA were also analyzed.

Study on Performance of an Fuel Pressure Regulator under Failure Condition in an Electric Control Diesel Engine (전자제어 디젤엔진의 연료압력 레귤레이터 고장에 따른 진단 및 성능 연구)

  • Kim, Tae-Jung;Cho, Hong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1677-1683
    • /
    • 2015
  • To cope with exhaust gas regulation, Diesel engine applied to electronic control system. As it accurately regulated the injected fuel mass and the fuel efficiency and the output are increased but the noise and the vibration are decreased. In order to keep the performance of Electronic Diesel Control System, it is important to accurately control the fuel pressure. However, when the regulator of fuel pressure is not controlled properly, the failure phenomenons(starting failure, staring delay, accelerated failure, engine mismatch et al.) occur because the fuel pressure is not stabilize. In this study, effects on a fuel pressure, engine rotating speed according to the control rate of fuel-pressure regulator are investigated in order to analyzed the performance variation with failure of fuel-pressure regulator. As a result, when the control rate of a fuel-pressure regulator is 4%~6% lower than that of standard condition, the variation of engine's rpm and return fuel flow is increased, and the abnormal condition was occurred. Besides, it is possible to diagnose the failures on fuel-pressure regulator under these conditions.

A Study on the Prediction of Fuel Consumption of a Ship Using the Principal Component Analysis (주성분 분석기법을 이용한 선박의 연료소비 예측에 관한 연구)

  • Kim, Young-Rong;Kim, Gujong;Park, Jun-Bum
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.335-343
    • /
    • 2019
  • As the regulations of ship exhaust gas have been strengthened recently, many measures are under consideration to reduce fuel consumption. Among them, research has been performed actively to develop a machine-learning model that predicts fuel consumption by using data collected from ships. However, many studies have not considered the methodology of the main parameter selection for the model or the processing of the collected data sufficiently, and the reckless use of data may cause problems such as multicollinearity between variables. In this study, we propose a method to predict the fuel consumption of the ship by using the principal component analysis to solve these problems. The principal component analysis was performed on the operational data of the 13K TEU container ship and the fuel consumption prediction model was implemented by regression analysis with extracted components. As the R-squared value of the model for the test data was 82.99%, this model would be expected to support the decision-making of operators in the voyage planning and contribute to the monitoring of energy-efficient operation of ships during voyages.