• Title/Summary/Keyword: Exhaust Efficiency

Search Result 834, Processing Time 0.023 seconds

A Study on the Thermal Flow of Waste Heat Recovery Unit (WHRU) for Ship's Organic Rankine Cycle Power Generation System using CFD Method (CFD를 활용한 선박고온도차발전용 WHRU의 열유동 해석에 관한 연구)

  • Whang, Dae-jung;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Oh, Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.647-655
    • /
    • 2021
  • The IMO (International Maritime Organization) is discussing the improvement of energy ef iciency of ships in order to reduce greenhouse gas emissions from ships. Currently, by applying an ORC power generation system using waste heat generated from ships, high energy conversion efficiency can be expected from ships. This technology uses an organic medium based on Freon or hydrocarbons as the working fluid, which evaporates at a lower temperature range than water. Through this, it is possible to generate steam (gas) and generate power at a low and low temperature relatively. In this study, the analysis of heat flow between the refrigerant and waste heat in the ORC power generation system, which is an organic Rankine cycle, is analyzed using 3D simulation techniques to determine the temperature change, velocity change, pressure change, and mass change of the fluid flowing of the WHRU (Waste Heat Recovery Unit) inside and the outside the structure. The purpose of this study is to analyze how the mass change affects the structure, and this study analyzed the heat transfer of the heat exchanger from the refrigerant and the exhaust gas of the ship's main engine in the ORC power generation system using this technique.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

Feasibility Study of Fuel Property for Fuel Processing Design on Ship and Warship (선박의 연료품질 기반 군용선박의 연료품질 적용가능성 분석)

  • Hwang, Gwang-Tak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.281-286
    • /
    • 2021
  • The International Maritime Organization recently proposed a policy to establish a preemptive response strategy for exhaust gas pollution on board ships according to the recent strengthening of the sulfur content regulations. Discussions on improving the fuel oil quality and reducing emissions are also ongoing. Fuel oil quality information, which is one of the main concerns internationally, is increasing as the sulfur content standard is being applied from the current 3.5% to 0.5% by 2020. From the perspective of shipping companies and recipients, the essential quality of fuel oil is also requested for domestic and international fuel oil information, basic properties, correlation information between characteristics for application of solid ships and ships. The current standard for the basic quality of fuel oil is generally used, but the nature and composition of the fuel oil are very complex, and the interpretation of the basic quality is complicated because there are many cases outside the scope of the basic standard. Various factors were analyzed for the basic quality of fuel oil in terms of the basic quality of fuel oil, optimization of operation in ships, and fuel efficiency in ships. Moreover, the possibility of applying the standard according to the dilution was suggested.

A Study on Capacity of Electric Propulsion System by Load Analysis of 6,800TEU Container Ship (6,800TEU 컨테이너선의 부하분석을 통한 전기추진시스템 용량 연구)

  • Jang, Jae-Hee;Son, Na-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.437-445
    • /
    • 2018
  • IMO (International Maritime Organization) has been strengthening the regulations of ship emission gas such as sulfur oxides (SOX), nitrogen oxides (NOX) and carbon dioxides (CO2) to protect the marine environment. Especially, ECA (Emission Control Area) has been set and operated in the USA and US. As a countermeasure against these environmental regulations, the demand for environmentally, friendly and highly efficient vessels has led to a growing interest in technology related research with respect to electric propulsion systems capable of reducing exhaust gas. Container ships were excluded from the application coverage of the electric propulsion systems for reasons of operation at economical speed. However, in the future, the need for electric propulsion system is expected to rise, because it is easy to monitor and control so that it can be an applicate to smart ship which are represented by fourth industrial revolution technology. In this study, research was carried out to design a generator and battery capacity through the load analysis of the 6,800TEU container ship to apply the electric propulsion system of the container ship. A capacity design based on the load analysis has an advantage that the generator can be operated in a high efficiency section through the load distribution control using the battery.

A study on structural performance of steel brackets in vertical shaft connected to double-deck tunnel (복층터널 연결 수직구용 철재브래킷 구조성능 연구)

  • Shin, Young-Wan;Min, Byeong-Heon;Nam, Jung-Bong;Lee, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Since the double-deck tunnel is deeply constructed in the city, it is necessary to secure the installation space of air supply and exhaust, escape passage stairs, elevator, distribution facilities and connection tunnels in the vertical shaft for the double-deck tunnel. Also, in order to minimize the effect of construction on adjacent area, it is necessary to construct the concrete structures at high speed in vertical shaft after tunnel excavation. Therefore, the slabs and the stairs in vertical shaft are needed to be constructed using precast concrete, and the rapid construction techniques of bracket for supporting the inner precast structure are needed. The bracket installation methods include cast-in-place concrete, precast concrete and steel. In this study, the improvement of the steel brackets with good economical efficiency and good workability was carried out in consideration of the improvement of the construction speed. We have developed a new bracket that is optimized through bracket shape improvement, anchor bolt position adjustment and quantity optimization. As a result of the structural performance test, it was confirmed that the required load supporting capacity was secured. As a result of structural performance test for bar type anchor bolt and bent anchor anchor bolt, it was confirmed that the required load carrying capacity was secured and that the load bearing capacity of bent anchor bolt was large.

Fundamental study on sound absorption of a dental hand piece using micro-porous EPP substrate processed by UV laser (UV 레이저응용 마이크로 다공성 EPP 기판의 치과용 핸드피스 흡음성능에 관한 기초연구)

  • You, Dong-Bin;Shin, Myung-Ho;Byun, Hyo-Jin;Choi, Do-Jung;Sung, Kuo-Won;Ma, Yong-Won;Shin, Bo-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • Recently many studies to reduce the noise of dental hand piece which generate inevitably mechanical sound to offend to the ear of a patient have been spotlighted. Generally, methods of adding a sound absorbing material inside the exhaust valve, air pump of machine or automobile are widely reported as optimal way to reduce the mechanical noise. In this paper we studied a new UV laser aided manufacturing of micro-porous structure of EPP substrate and applied dental hand piece to improve the efficiency of sound absorption. A lot of micro-sized pores were fabricated with UV laser processing on the surface of sliced EPP substrate. From fundamental experiments, more high-performance of micro-porous EPP substrate has finally demonstrated for sound-absorbing structure of the micro muffler inside dental hand piece, which actually has the excellent potential to apply a lot of potable machine.

A Study on the Emission and Particulate Matter of a Heavy Duty Natural Gas Engine According to Gas Composition under certification tests (인증시험 조건에서 가스조성 변화에 따른 대형 천연가스 엔진 배기가스 및 입자상 물질 배출 특성에 관한 연구)

  • Choi, Ji-Seon;Park, Cheol-Woong;Jang, Hyoung-Jun;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.66-73
    • /
    • 2021
  • In this study, The full load test and WHTC mode test were performed to examine the effect on a heavy duty natural gas engine according to the type of standard gas for certification to check engine performance and exhaust characteristics. Two types of standard gas (Gr, G23) and commercially available natural gas were applied as the fuel used. As a result of the test results of three natural gases with different fuel compositions, G23 with a high nitrogen content was inferior in torque, fuel consumption, and thermal efficiency conditions. In addition, when evaluated in the WHTC mode it was possible to obtain a result that satisfies the EURO VI regulation. However, compared to the other two fuels, the emission characteristics of G23 decreased CO2 and CO, but increased CH4, NOx and PN emissions.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

A Study on Livestock Odor Reduction Using Water Washing System (수세탈취시스템을 이용한 축산악취저감에 관한 연구)

  • Jeon, Kyoung-Ho;Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Kim, Jae-Hwan;Kwag, Jung-Hoon;Kang, Hee-Sul;Jeong, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • The odor problem in the livestock is increasing by 7% annually. Most importantly, the livestock odor problem in swinery accounts for the maximum ratio (54%). In this study, we reviewed the possibility of deodorizing swinery using an odor reduction device that can be used with the water washing system. First, the study confirmed that the solubility of odor gas, which was hydrogen sulfide, was very low regardless of the contact time with solvent, but the solubility of methyl mercaptan was found to increase along with the increase in time. The solubility of other odor gases, such as dimethyl sulfide, dimethyl disulfide and ammonia, was considerably high. Consequently, it is considered that if the odor reduction device for the water washing system deodorization is used in a swinery, the time during which the exhaust gas is in contact with usable water must be extended, or solvent quantity must be expanded. However, it is predicted that although hydrogen sulfide is easily generated in the anaerobic condition, it is difficult to expect high odor reduction efficiency because this gas has low solubility in water, especially in case it is used in the deodorization of the water washing system. The result of the solubility experiment using the bench-scale device practically manufactured represented the higher odor reduction ratio than expected. This result was possible because the removal efficiency of dust particles could be reached up to 93%. Therefore, it is judged that also the odor gas absorbed on dust particles could be removed by removal of dust. Consequently, it is expected that the higher order reduction ratio will be possible by structural improvement for increasing contact with water and odor gas.