• Title/Summary/Keyword: Exhaust Efficiency

Search Result 831, Processing Time 0.022 seconds

The Characteristics of Exhaust Emissions by using Oxygenated Fuels and EGR in IDI Diesel Engine (함산소연료(Diglyme, DEE)와 EGR 방법을 이용한 간접분사식 디젤기관의 배기가스 배출 특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.108-116
    • /
    • 2002
  • The diesel engine is one of the most effective transport options available in all sizes and covering a wide range of applications. But, many researchers developing the diesel engine are facing tough challenges in view of the increasingly lower emissions standards. Thus, this study will explore the possible fuel additive technology to further reduce the emissions from the IDI diesel engine. The purpose of this study is to investigate the effects of oxygenated fuels on the exhaust emissions and to attain a better trade-off relation between smoke and NOx in four cylinder diesel engine. Experiments were conducted with oxygenated fuels as an effective way to improve the combustion efficiency. Some of oxygenated fuel(Diglyme and DEE) were added to the conventional diesel fuel which had no an oxygen content. Also, EGR was adopted for reducing NOx without any strong adverse effects on other exhaust emissions. This study concluded that exhaust emissions in diesel engine could be reduced by adding the oxygenated fuels which had lower boiling point, and the combustion efficiency was also improved as the oxygen content in fuel increased.

A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel (소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

An Investigation on Enhencing Thermal Efficiency of a Hydrogen Fueled 2 Stroke Free-piston Engine with Reverse Uni-flow Scavenging (역단류 소기방식을 갖는 2행정 프리피스톤 수소기관의 열효율 향상에 관한 연구)

  • Byun, Chang-Hee;Baek, Dae-Ha;Lee, Jong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.299-304
    • /
    • 2011
  • A hydrogen fueled 2 stroke free-piston engine with reverse uni-flow scavenging have a advantageous structure for the backfire occurrence, but it can reduce thermal efficiency by the circuit-flow to go through a exhaust-port. In this research, varied boost pressure, SVOT and exhaust pressure are used in a 2stroke free-piston engine with hydrogen fueled for studying the possibility of increasing thermal efficiency of free-piston hydrogen engine. As a result, to increase thermal efficiency of free-piston are suitable to supply the mixture after port closed the exhaust rater than to use the scanvenging. And it was increased by the exhaust pressure, to achieve it must be used the lean-mixture at SVOT aBDC $34^{\circ}$.

Exhaust Emissions Characteristics of Bi-fuel CNG/LPG Passenger Cars (CNG/LPG Bi-fuel 승용차의 배출가스 특성)

  • Cho, Chong-Pyo;Lee, Young-Jae;Kim, Gang-Chul;Kwon, Oh-Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • Compressed natural gas (CNG) is well known as one of the cleanest burning alternative fuels. Bi-fuel CNG vehicle can also run on gasoline or another fuel while dedicated natural gas vehicle is designed to run on natural gas only. Recently, increased attention has been focused on bi-fuel CNG/LPG taxi because of good fuel economy of CNG. A number of LPG taxis modified to CNG Bi-fuel vehicles are running in many cities. In this paper, the emissions characteristics of in-use passenger cars running on CNG and LPG were investigated. Chassis dynamometer test was used to measure exhaust emissions from an in-use fleet of 5 cars. Exhaust emissions were collected for CVS-75 driving mode. The test results showed that for CNG fuel mode, CO, $CO_2$ and NMHC emissions decreased to 9%, 12% and 14% respectively, and $CH_4$ and $NO_x$ emissions increased to 317% and 47% respectively.

Design of gas suspension absorber to improve desulfurization efficiency

  • Hwang, Woohyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.189-195
    • /
    • 2020
  • In this study, the inlet duct and guide vane of the gas floating absorption tower were redesigned to improve the desulfurization efficiency so that the exhaust gas can be uniformly introduced into the absorption tower. In order to reduce the sulfur oxide pollutants among the main sources of air pollutants in industrial boilers, the existing equipment is redesigned and solved. For this purpose, change the exhaust gas, the slurry and recycling the adsorbent to improve the removal efficiency of SOx component in the exhaust gas inside the gas floating absorption tower so as to uniformly contact. And the initial design value and CFD value for the pressure loss from the boiler outlet to the gas floating absorption tower outlet are verified. Also, the velocity distribution of the exhaust gas, the concentration distribution of the recycled adsorbent, the liquid slurry behavior, and the pressure loss were compared. The results confirmed that the desulfurization efficiency was improved because the pressure loss from the boiler outlet to the absorption tower outlet was reduced and the deflection of the exhaust gas was minimized.

Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger - (공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여-)

  • Kim, Yung Bok;Song, Hyun Kap
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF

The Performance Evaluation of the Exhaust Stack used in High Riser Public House (초고층 공동주택 국소배기용 입상덕트의 배기성능평가)

  • Kwon, Yong-Il;Kim, Ung-Yong;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • Exhaust system used in toilet and cooking place of high riser public house is roof fan of two basic types : natural roof ventilator and natural/forced roof ventilator. Natural/forced roof ventilator has a motor in the rotary shaft. There are many high riser public house in Korea. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser building depend on stack effect. This study investigates on stack pressure determined by exterior pressure and the difference pressure control in exhaust stack used in high riser public house. This paper focuses mainly on the effect of the time interval for power supply of motor installed in roof fan with function of natural wind velocity and of exhaust air volume of toilet. It is observed there are higher exhaust efficiency than the existing natural roof ventilator.

A Study on the Mechanical Ventilation Design that Consider Supply and Exhaust Efficiency of the Apartment House Kitchen (공동주택 주방의 급ㆍ배기효율을 고려한 기계환기 설계에 관한 연구)

  • 함진식
    • Journal of the Korean housing association
    • /
    • v.15 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • To find more efficient exhaust effect, air curtain of upward or downward trend in gas table and left or right side of range hood were made. As result that film vapor from range hood lower part by digital camera, the air current change by moving existence and nonexistence of exhaust fan and direction of air curtain were known. Under all experiment condition, upward air curtain superior exhaust performance.

A Study on Emission Reduction by Diesel Oxidation Catalyst in Diesel Engine (CI기관에서 디젤산화촉매장치에 의한 배출가스 저감에 관한 연구)

  • 김경배;한영출;강호인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.164-170
    • /
    • 1996
  • Among after treatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now being studied actively. In this study, an experiment was conducted to analyze the effects on factors of oxidaton characteristics and conversion efficiency of DOC. We tested to estimate change of engine performance whether a 11,000cc diesel engine equipps with DOC or not. We conducted test to estimate the reduction efficiency of exhaust gas in P-5 mode, in D-13 mode of heavy duty diesel regulation mode and in somoke opacity mode for two samples and also we conducted test to analyze the effects about both exhaust gas velocities 1,100rpm and 2,200rpm

  • PDF

A Thermodynamic Study on Exhaust Heated Gas Turbine Cycle (연소기 후치 가스터빈에 관한 열역학적 연구)

  • Park, J.K.;Ohu, S.C.;Yang, O.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.18-28
    • /
    • 1994
  • An exhaust-heated gas turbine cycle equipped with a waste heat recovery boiler and ammonia absorption-type refrigerator using waste heat is newly devised and analyzed. The general performance of this cycle is compared with that of the conventional gas turbine cycle. This cycle shows a potential high efficiency. When 1500K of gas turbine inlet temperature the efficiency is 53 percent as compared to 45 percent for a conventional combined cycle. Suction cooling of this cycle leads to improve the thermal efficiency and the specific output.

  • PDF