• 제목/요약/키워드: Exhaust

검색결과 3,824건 처리시간 0.032초

합성가스를 이용한 SI엔진의 아이들 성능 개선에 관한 연구 (A Study on the Improvements of Idle Performance for a SI Engine with a Syngas Assist)

  • 김창기;송춘섭;조용석;강건용
    • 한국연소학회지
    • /
    • 제11권4호
    • /
    • pp.14-21
    • /
    • 2006
  • In this study, syngas which is reformed from fossil fuel and has hydrogen as a major component, was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction of the total supplied fuel varied to 0 %, 25 %, 50 % with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions. It is supposed that the usage of syngas in the internal combustion engine is an effective solution to meet the future strict emission regulations.

  • PDF

상용차 배기계에서 액티브 머플러를 이용한 배기 소음 제어 (Exhaust Noise Control with the Active Muffler in Exhaust System of Vehicle)

  • 김홍섭;홍진석;오재응;송진호
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.36-42
    • /
    • 1998
  • In this study, active muffler was designed and was manufactured for exhaust noise reduction of commercial vehicle, then experiment of real vehicle was conducted. In a manufactured active muffler, because the flow of exhaust noise in tail pope outlet are become a plane wave, the global reduction if radiation noise from outlet and the placement of error microphone to avoid the exhaust gas of high temperature could be implemented. In control algorithm, reduction of noise of engine driving frequency and harmonic frequency can be archieved using proposed reference signal including a fixed speed state(2,000rpm, 3,000rpm, 4,000rpm) and a run-up speed state(2,000rpm$\rightarrow$4,000rpm) is accomplished with the active muffler installed in vehicle.

  • PDF

미연배기가스 점화 기술을 이용한 배기저감 (Emission Reduction using Unburned Exhaust Gas Ignition)

  • 김득상;강봉균;양창석;조용석
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.39-47
    • /
    • 2003
  • UEGI (Unburned Exhaust Gas Ignition) is an alternative method for fast light-off of a catalyst. It ignites the unburned exhaust mixture using two glow plugs installed in the upstream of the close-coupled catalysts. In addition, a hydrocarbon adsorber was applied to the UEGI, for more effective reduction of HC emission. Engine bench tests show that the CCC reaches the light-off temperature laster than the baseline exhaust system and HC and CO emissions are reduced significantly during the cold start. From the vehicle test, it was observed that a few amount of HC emission was reduced even the catalysts were aged. It is expected to develop a solution kit applicable to a new vehicle or used one, to meet the emission regulation

배기관의 길이변화가 4사이클 4기통 전기 점화기관의 성능에 미치는 영향에 관한 연구 (A Study on the Effect of Exhaust Pipe Length of 4 Cycle 4 Cylinder S.I. Engine on the Performance)

  • 정수진;김태훈;조진호
    • 한국안전학회지
    • /
    • 제8권3호
    • /
    • pp.3-12
    • /
    • 1993
  • In reciprocating internal combustion engine, engine performance Is greatly affected by volumetric efficiency. For gas flow, the dynamic effects caused by the pressure pulsation have influence on the volumetric efficiency and correlate to the configuration and pipe length of intake-exhaust system. In this study, the analytic investigation of the unstudy flow In exhaust pipe has been carried out by using the method of characteristics to predict volumetric efficiency. In conculusion, it is possible to take account of the exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparision of prediction with experimental datas show a good agreement on the pressure varision in the exhaust pipe which has Influence on the volumetric efficiency and performance of engine.

  • PDF

LPG와 가솔린 연료의 차량 배출가스 특성에 대한 비교 연구 (A Study on the Exhaust Emission of LPG and Gasoline Vehicle)

  • 정성환;한상명
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.23-28
    • /
    • 2002
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive industries have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative aftertreatment systems, and using clean fuels. Methanol, ethanol, LNG, LPG, H2, reformulated gasoline are generally recognized as the clean fuel. Since the low price policy of government on LPG has expanded its vehicle market recently, there is concern of the exhaust emission of LPG vehicle. In this paper, we studied the value of LPG fuel as a clean fuel by comparing the results of the exhaust emission from LPG and Gasoline fueled vehicles, and discussed its limitation of LPG vehicle with mixer type as a fuel supply system. FTIR was used to understand the difference of exhaust emission components of LPG and Gasoline fueled vehicles.

합성가스를 이용한 가솔린엔진 아이들 성능 개선에 관한 연구 (A Study on Idle Performance Improvements for a Gasoline Engine with the Syngas Assist)

  • 송춘섭;김창기;강건용;조용석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.245-251
    • /
    • 2005
  • Recently, fuel reforming technology for the fuel cell vehicle has been applied to internal combustion engines, with various purpose. Syngas which is reformed from fossil fuel has hydrogen as a major component. It has better effort in combustion characteristics such as wide flammability and hig speed flame propagation. In this study, syngas was added to a gasoline engine for the improvement of combustion stability and exhaust emission in idle state. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to extend lean operation limit and ignition retard range. with dramatical reduction of engine out emissions.

  • PDF

역유동계산법을 이용한 국소배기효율의 수치해석 (Numerical analysis of local exhaust effectiveness using reverse-flow calculation method)

  • 한화택
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.658-665
    • /
    • 1998
  • This paper investigates local exhaust effectiveness in a room with a supply and an exhaust slots on the ceiling. The mean age of air is an indicator of supply effectiveness, while the mean residual life time can be used as an indicator of exhaust effectiveness. The distribution of local mean residual life time in a space is calculated by four different numerical procedures. The reverse-flow calculation method has been proved to show quite accurate results while it can save considerable amount of computation time and efforts, compared to the method by its original definition. It is concluded that the diffusion term in the equation of mean residual life time can be neglected. The spatial and temporal diffusion characteristics of the contaminant are also discussed.

  • PDF

실험실습용 국소배기 기초실험장치의 개발 (Development of Basic Local Exhaust Ventilation System for Experimental Education)

  • 한돈희;박민규
    • 한국환경보건학회지
    • /
    • 제31권5호
    • /
    • pp.372-378
    • /
    • 2005
  • To enhance educational effect for exhaust ventilation system, more instructive educational engineering such as experimental system should be needed. This study was performed to 1) manufacture the basic experimental system for local exhaust ventilation, 2) experiment with this system and 3) develop methodology of exhaust ventilation education. With this system, three pressures (static pressure(SP), velocity pressure(VP) and total pressure(TP)) were measured and illustrated and the graphic shapes agreed to theoretical ones relatively. Entry loss factor ($F_h$) of each hood was found to be different with hood shape, duct velocity and flow rate. This result implies that precise $F_h$ should be determined case by case and a industrial hygienist should not be dependent on the existing values. Pressure loss using velocity pressure method and characteristics of air movement near hoods using fume were grasped with this system. But larger system should be recommended to produce more precise experimental results.

냉시동시 미연 배기가스 점화 기술을 이용한 촉매 온도 상승 효과에 관한 연구 (A Study of Catalyst Temperature Rise Effect by using UEGI(Unburned Exhaust Gas Ignition) Technology during Cold-Start)

  • 김충식;천준영;최진욱;김인탁;엄인용;조용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.335-340
    • /
    • 2000
  • Most vehicle's exhaust emissions come from the cold transient period of the FTP-75 test. In this study, UEGI technology was developed to help close-coupled catalytic converter (CCC) reach light-off temperature within a few seconds after cold-start. In the UEGI system, unburned exhaust mixture is ignited by four glow plugs installed upstream of the catalyst. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches light-off temperature earlier. Under the conditions tested, the light-off time of the baseline case was 62 seconds and that of the UEGI case was 33 seconds.

  • PDF

대형디젤기관에서 바이오디젤과 초저유황경유 사용에 의한 성능 및 배출가스에 미치는 영향에 관한 연구 (A Study on Performance and Exhaust Emission with Bio-Diesel and ULSD at Heavy-Duty Diesel Engine)

  • 박만재
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.97-103
    • /
    • 2003
  • Currently, due to serious increase of pollution scones, lots of technology has been involved to reduce exhaust gas in diesel engine. But the amounts of exhaust gas can not be decreased somehow due to the increase of diesel vehicles. Moreover, emission standards of each counties are being stringent in advanced countries such as USA and Europe. In the near future, sulfur contents in fuel must be essentially reduced f3r health and environment because sulfur can basically reduce exhaust gas. Therefore, when will be applied to Bio-diesel and ULSD, they could reduce sulfur contents of fuel without aftertreatment and might conform the influence of engine performance, emission, smoke and fuel consumption.