• 제목/요약/키워드: Exhaust

Search Result 3,824, Processing Time 0.029 seconds

A NUMERICAL SIMULATION OF INFRARED RADIATION OF EXHAUST PLUME (배기 후류의 적외선 방사 특성 모사를 위한 수치적 연구)

  • Zhang, Y.;Yang, Y.R.;Park, G.R.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.422-425
    • /
    • 2010
  • The infrared radiation of exhaust plume was investigated numerically by a finite volume method (FVM) with anisotropic scattering particles. The exhaust plume is considered to absorb, emit and scatter radiant energy isotropically as well as anisotropically. The spatial and spectral distribution characteristics were obtained for the detection wavelength with $2.7{\mu}m$. The radiative intensities were presented for the different detective direction.

  • PDF

A Study on the Mechanical Ventilation Design that Consider Supply and Exhaust Efficiency of the Apartment House Kitchen (공동주택 주방의 급ㆍ배기효율을 고려한 기계환기 설계에 관한 연구)

  • 함진식
    • Journal of the Korean housing association
    • /
    • v.15 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • To find more efficient exhaust effect, air curtain of upward or downward trend in gas table and left or right side of range hood were made. As result that film vapor from range hood lower part by digital camera, the air current change by moving existence and nonexistence of exhaust fan and direction of air curtain were known. Under all experiment condition, upward air curtain superior exhaust performance.

development of a model of the exhaust System for the Stress Analysis (응력해석을 위한 배기계 모델 개발)

  • 이장명;박성태;김상호;조규수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.370-376
    • /
    • 1997
  • A Simplified Finite Element Method(FEM) model has been developed for the Exhaust System. For the verification of the usage of the developed model , Natural Frequencies, Mode Shapes and Frequency Response Function have been compared between numerical analysis and experimental result. It shows that the developed numerical model also can be utilized to prove the Stress distribution of the Exhaust System if it can be adopted for the vibration analysis adequately.

  • PDF

Development of a Model of the Exhaust System for the Stress Analysis (응력해석을 위한 배기계 모델 개발)

  • 김상호;이장명;박성태
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.295-301
    • /
    • 1999
  • A Simplified Finite Element Method(FEM) model has been developed for the Exhaust System. For the verification of the usage of the developed model. Natural Frequencies, Mode Shapes and Frequency Response Function have been compared between numerical analysis and experimental result. It shows that the developed numerical model also can be utilized to prove the Stress distribution of the Exhaust System if it can be adopted for the vibration analysis adequately.

  • PDF

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

Study on the Characteristics of Exhaust Emissions in accordance with the Intake Manifold and Fuel Injector Maintenance of the Electronic Control Diesel Engine (전자제어 디젤엔진의 흡기 다기관 및 연료분사장치 정비에 따른 매연 배출특성에 관한 연구)

  • Kang, Hyun-Jun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.196-205
    • /
    • 2016
  • The exhaust gas discharged by cars not only threatens the health of the human body, but also contributes to global warming, due to the resulting increase in the concentrations of ozone, fine dust and carbon dioxide. Therefore, the government has steadily implemented careful inspection systems for exhaust emissions, in order to efficiently regulate the exhaust gas of cars. Studies on reducing the exhaust emissions of automobiles have been conducted in various fields, including ones designed to reduce the generation of HC, NOx, and $CO_2$ in the exhaust emission of vehicles. However, there have been insufficient studies on the reduction of the exhaust emission for old diesel vehicles. To develop careful inspection systems for the exhaust emissions of old diesel vehicles, studies on the reduction of the exhaust emissions and improvement of power are necessary by cleaning the carbon sediment in both the intake manifold and injector. Therefore, in this study, we analyzed and compared the amounts of gas emitted when simultaneously cleaning or not cleaning the intake manifold and injector of diesel automobiles with mileages over 80,000 km and operating periods over 5 years. The experimental results showed that in the case where the intake manifold and injector were simultaneously cleaned, there was a decline of 75.2% in the gas emission compared to the cases where only the manifold or injector is cleaned. Also, it was found that simultaneously cleansing the intake manifold and injector enabled the exhaust standard to be satisfied for less than 30% within 8.5 sec.

A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines (디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-Whan;Ha, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

Numerical Analysis for Drag Force of Underwater Vehicle with Exhaust Injected inside Supercavitation Cavity (초공동 수중비행체의 공동영역 내부에서 분사된 배기가스가 수중비행체의 항력에 미치는 영향에 대한 수치해석적 연구)

  • Yoo, Sang Won;Lee, Woo Keun;Kim, Tea Soon;Kwack, Young Kyun;Ko, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.913-919
    • /
    • 2015
  • A supercavitating vehicle has a speed of more than 300 km/h in water. A numerical analysis of the flow around a supercavitating vehicle must deal with a multiphase flow consisting of the water, vapor and exhaust gas because the vehicle is powered by roket propulsion. The effect of the exhaust gas on the vehicle is an important part in the study of the performance of the supercavitating vehicle. In the present study, the effect of the exhaust gas on the drag of vehicle was investigated by conducting numerical analysis. When there is no exhaust gas, drag of vehicle is affected by re-entrant. In the case with rocket propulsion, the exhaust gas reduces the influence of re-entrant. The exhaust gas also creates Mach disk and it changes drag profile.

Evaluation of Environmental Mutagens-Complex Mixture in Diesel Exhaust Respirable Particulate Matter

  • Kim, Soung-Ho;Ryu, Byung-Tak;Jang, Hyoung-Seok;Kim, Yun-Hee;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.194-194
    • /
    • 2003
  • The International Agency for Research on Cancer (IARC, 1989) has classified whole diesel exhaust as probably carcinogenic to humans. Diesel exhaust particulate matter (DPM) adsorbs different chemical substances including PAHs and nitroarenes. DPM is emphasized because it is a major component of diesel exhaust, it is suspected of contributing to a health hazard. Diesel exhaust is a complex mixture of carbon particles and associated organics and inorganics, and it is not known what fraction or combination of fractions cause the health effects [cancer effects, noncancer effects (respiratory tract irritation/inflammation and changes in lung function)] that have been observed with exposure to diesel exhaust. In order to identify which chemical classes are responsible for the majority of the observed biological activities, we performed a particular biological/chemical analysis. Respirable particulate matter (PM2.5: <2.5mm) was collected from diesel engine exhaust using a high-volume sampler equipped with a cascade impactor. Particulate oganic matter was extracted by the dichloromethane/sonication method and the crude extract was fractionated according to EPA recommended procedure into seven fractions by acid-base partitioning and silica gel column chromatography. We examined genotoxic potentials of diesel exhaust particulate matter using novel genotoxicity tests, which are rapid, simple and sensitive methods for assessing DNA-damage at the DNA and chromosomal level (comet assay, in vitro MN test and Ames test). Higher genotoxic potency was observed in non polar fractions and several PAHs were detected by GC-MS, such as 1,2,5,6 dibenzanthracene, chrysene, 1,2-benzanthracene, phenanthrene and fluoranthene.

  • PDF

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (도로터널 화재시 반횡류식 균일배기 환기방식에서의 최적배연 연구)

  • Jeon, Yong-Han;Yoo, Ji-Oh;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Jong-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • In this study it is intended to review the moving characteristics of smoke by performing visualization for calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for design of the smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. In case of oversized exhaust ports, the generated smoke is more than the case of uniform exhaust. When the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173\;m^3/s$, $236\;m^3/s$ for the distance of the moving smoke which can limit the distance to 250 m.