• Title/Summary/Keyword: Exhalation rate

Search Result 24, Processing Time 0.034 seconds

Measurement of Radon-222 Exhalation Rate from Building Materials by Using CR-39 Radon Cup (CR-39 라돈컵을 이용한 국산 전축자재의 라돈-222 방출율 측정)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byoung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.15-24
    • /
    • 1991
  • Radon-222 exhalation rate from several domestic building materials were experimentally measured by using radon cup method, in which a CR-39 plastic is used as a passive radon detector. The radon detection factor of CR-39 detector determined in a series of calibration experiments was $0.164{\pm}0.005(tracks\;cm^{-2}/Bq\;d\;m^{-3})$, which is consistent with those reported by other investigators. The radon exhalation rates of several building materials (brick, red brick, concrete block, granite plate, concrete floor and wall) ranges from $6.8{\times}10^{-6}\;(granite plate)\;to\;75.0{\times}10^{-6}Bq/m^2-sec(brick)$ with the increasing order of granite plate, red brick, concrete wall, concrete block, concrete floor and brick. It showed that the CR39 radon cup can be efficiently utilized in measuring the radon-222 gas exhalation rate from building materials.

  • PDF

Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment

  • Syuryavin, Ahmad Ciptadi;Park, Seongjin;Nirwono, Muttaqin Margo;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2370-2378
    • /
    • 2020
  • Building materials contribute significantly to the indoor radon and thoron levels. Therefore, parameters that influence the exhalation rates of radon and thoron from building material need to be analyzed closely. As a preliminary study, the effects of humidity on exhalation rates were measured using a system with an accumulation chamber and RAD7 detector for Korean brick, Korean soil, and Indonesian brick. Resulting doses to a person who resides in a room constructed from the building materials were assessed by UNSCEAR method for different air exchange rates. The measurements have revealed that Korean brick exhaled the highest radon and thoron while Indonesian brick exhaled the lowest thoron. Results showed that for a typical low dense material, radon and thoron exhalation rate will increase until reached its maximum at a certain value of humidity and will remain saturated above it. Analysis on concentration and effective dose showed that radon is strongly affected by air exchange rate (ACH). This is showed by about 66 times decrease of radon dose from 0.00 h-1 to those of 0.50 h-1 ACH and decrease by a factor of 2 from 0.50 h-1 to those of 0.80 h-1. In case of thoron, the ACH doesn't have significant effects on effective dose.

The Effects of Posture and the Ratio of Inhalation and Exhalation on Heart Rate Variability (호흡 시 자세와 들숨 및 날숨 비율이 심박변이도에 미치는 영향)

  • Kim, Ji-Hwan;Park, Seong-Sik
    • The Journal of Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.114-124
    • /
    • 2016
  • Objectives: The aim of this study is to find what effects both the posture of sitting and standing and the ratio of inhalation and exhalation (I/E) have on heart rate variability (HRV) Methods: We made two breathing sets with 4:6 or 6:4 ratios of I/E at 0.1 Hz of respiratory frequency and sitting or standing position. There was 20 minute-rest between sets. Each set include 5 minute-3 breathings as follows: 0.1Hz paced breath with sitting, usual breathing with standing and 0.1Hz paced breath with standing. Five minute-usual breathings with sitting as basal lines were exerted before and after these 3 breaths. Electrocardiogram-recording was exerted from 73 healthy participants (37 men and 36 women) who carried out two sets of breathings. Finally, HRV indices were analyzed of 62 participants (32 men and 30 women). Results: In 4:6 maintaining the same posture, SDNN were statistically increased, while mean heart rate(HR) were not changed. In 6:4, mean HR, SDNN were statistically increased. When changed from sitting to standing, in 4:6, SDNN were statistically decreased and mean HR was increased. However, in 6:4 during change of posture, SDNN were also statistically decreased and mean HR was statistically decreased. There was no statistical change of HF during 4:6 or 6:4 ratios of I/E moving from sitting to standing position. Conclusions: For increasing HRV, breathing in low respiratory rate with sitting was recommended regardless of ratio of I/E. In changing from sitting to standing, 4:6 may increase mean HR, and 6:4 may decrease mean HR.

How Does the Filter on the Mask Affect Your Breathing?

  • Kum, Dong-Min;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.438-443
    • /
    • 2021
  • Objective: The purpose of this study was to determine the effect of the difference in mask filters on the respiration rate of healthy people. Design: A randomized cross-over design. Methods: A total of 15 subjects were selected for this study (n=15). After filling out the Physical Activity Readiness Questionnaire, the selected participants abstained from caffeinated beverages and meals 30 minutes before and sat in a chair 10 minutes before stabilizing their breathing. Afterwards, the lung function test was performed 3 times for each mask, and the maximum value was used. The provided masks were Mask Free, Dental Mask, KF80, and KF94. Exhalation was measured for 6 seconds for each mask, and breathing was stabilized by repeating inhalation and exhalation until the next time. Results: In this study, the difference in respiratory function according to the mask type was statistically significant except for FEV1 and FVC (p<0.05). As a result of post-hoc analysis, FVC, FEV1, PEF, and FEF values were significantly lower than those of the control group not wearing a mask (p<0.05). When wearing KF94, FVC, FEV1, PEF25-25%, and FEF were significantly lower than when wearing a dental mask (p<0.05). When wearing a KF80 mask, it was significantly lower in FVC and FEV1 than when wearing a dental mask (p<0.05). In FEV1/FVC, the difference by mask type was not statistically significant (p<0.05), but it was lower than the spirometry standard of COPD patients (FEV1/FVC<0.7). Conclusions: As Now that wearing a mask is essential, it has been confirmed that the mask affects the respiratory rate.Therefore, in the case of healthy adults, it is recommended to rest after wearing a mask if attention deficit or headache occurs. People with low breathing capacity are recommended to have low-intensity activities and frequent rest periods after wearing a mask.

Two algorithms for detecting respiratory rate from portable patient monitoring device (휴대형 심전도 모니터링 장치에서의 2가지 호흡 검출 알고리즘)

  • Kim, Jong-Myoung;Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Joug;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.36-38
    • /
    • 2006
  • In this study, two algorithms for detecting respiratory rate from Portable ECG device were presented. The first algorithms counts the number of ECG samples between R-R peaks, which varies according to respiratory states of patients, such as, exhalation and inhalation. The second algorithms detects the rate by measuring the size of R wave, which also varies according to the respiratory status of patient. These two algorithms were programmed to the laboratory developed ECG device and their usefulness was verified in laboratory environment.

  • PDF

Classification of Asthma Disease Using Thoracic Data (흉부음 데이터를 이용한 천식 질환 판별)

  • Moon In-Seob;Choi Hyoung-Ki;Lee Chul-Hee;Park Ki-Young;Kim Chong-Kyo
    • MALSORI
    • /
    • no.49
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, we make a study of classification normal from abnormal - normal, asthma through analysis of thoracic sound to take use thoracic sound detection system. Thoracic sound detection system has a function to store thoracic sound and analyze the data. The wave shape of thoracic sound is similar to noise and is systematically generated by inhalation and exhalation breathing, therefore, in this paper, to classify asthma sound in thoracic sound, we could discriminate between normal and abnormal case using level crossing rate(LCR) and spectrogram energy rate.

  • PDF

Study on the Asymmetric Regional Deposition of Airborne Pollutant Particles in the Human Respiratory Tract (대기오염 입자의 인체 호흡기내 비대칭 국부침전 특성에 관한 연구)

  • 구재학;김종숭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.551-560
    • /
    • 2003
  • Particle deposition in human lungs was investigated theoretically by using asymmetric five-lobe lung model. The volumes of each of the five lobes were different, thereby forming an asymmetric lung structure. The tidal volume and flow rate of each lobe were scaled according to lobar volume. The total and regional deposition with various breathing patterns were calculated by means of tracking volume segments and accounting for particle loss during inhalation and exhalation. The deposition fractions were obtained for each airway generation and lung lobe, and dominant deposition mechanisms were investigated for different size particles. Results show that the tidal volume and flow rate have a characteristic influence on particle deposition. The total deposition fraction increases with an increase in tidal volume for all particle sizes. However, flow rate has dichotomous effects: a higher flow rate results in a sharp increase in deposition for large size particles, but decreases deposition for small size particles. Deposition distribution within the lung shifts proximally with higher flow rate whereas deposition peak shifts to the deeper lung region with larger tidal volume. Deposition fraction in each lobe was proportional to its volume. Among the three main deposition mechanisms, diffusion was dominant for particles < 0.5 ${\mu}{\textrm}{m}$ whereas sedimentation and impaction were most influential for larger size particles. Impaction was particularly dominant for particles> 8 ${\mu}{\textrm}{m}$. The results may prove to be useful for estimating deposition dose of inhaled pollutant particles at various breathing conditions.

The Relationship and Mechanism Underlying the Effect of Conscious Breathing on the Autonomic Nervous System and Brain Waves (의식적 호흡이 자율신경과 뇌파에 영향을 미치는 기전에 관하여)

  • Kang, Seung Wan
    • Perspectives in Nursing Science
    • /
    • v.14 no.2
    • /
    • pp.64-69
    • /
    • 2017
  • Purpose: Breathing can be controlled either unconsciously or consciously. In Asian countries, various conscious breathing-control techniques have been practiced for many years to promote health and wellbeing. However, the exact mechanism underlying these techniques has not yet been established. The purpose of this study is to explore the physiological mechanism explaining how conscious breathing control could affect the autonomic nervous system, brain activity, and mental changes. Methods: The coupling phenomenon among breathing rhythm, heart rate variability, and brain waves was explored theoretically based on the research hypothesis and a review of the literature. Results: Respiratory sinus arrhythmia is a well-known phenomenon in which heart rate changes to become synchronized with breathing: inhalation increases heart rate and exhalation decreases it. HRV BFB training depends on conscious breathing control. During coherent sinusoidal heart rate changes, brain ${\alpha}$ waves could be enhanced. An increase in ${\alpha}$ waves was also found and the synchronicity between heart beat rhythm and brain wave became strengthened during meditation. Conclusion: In addition to the effect of emotion on breathing patterns, conscious breathing could change heart beat rhythms and brainwaves, and subsequently affect emotional status.

Accumulation Property in Human Body of Benzene Derived from Groundwater According to Exposure Pathway (지하수에서 유래한 벤젠의 노출경로별 인체축적특성)

  • 김상준;이현호;박지연;이유진;유동한;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.12-27
    • /
    • 2004
  • The contamination pattern of indoor air was simulated when groundwater dissolving benzene was used for household activities. Indoor exposure scenario consisted of inhalation, ingestion, and dermal absorption. Physiologically based pharmacokinetic (PBPK) model was used to analyze how benzene exposed to human body was distributed in internal organs. Main exposure pathways contributing total internal dose were inhalation and ingestion while the contribution of dermal absorption was very small. Man showed higher exposure rate than woman due to his higher breath rate. For a short-term exposure, benzene concentration in venous blood of SPT, RPT and liver changed rapidly while slowly did in venous blood of adipose tissue at a low concentration. For a long-term exposure, woman accumulated about 2.1 times higher than man. Most of benzene exposed to human body was removed by exhalation and metabolism at lung and liver, respectively. For inhalation and ingestion, the benzene removals by exhalation were 69.8 and 48.4%, respectively. Relative importance of removal mechanism was different according to the inflow displacement of benzene. The results obtained from this study would help understand exposure, distribution, and removal phenomena and make plans for the reduction of the health risk associated with the contaminated groundwater by various organic compounds.

Distribution of natural radioactivity in soil and date palm-pits using high purity germanium radiation detectors and LB-alpha/beta gas-flow counter in Saudi Arabia

  • Shayeb, Mohammad Abu;Baloch, Muzahir Ali
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1282-1288
    • /
    • 2020
  • In the first study, the Radon emanation and radiological hazards associated with radionuclides in soil samples, collected from 9 various date palm farms located in 3 different districts in Saudi Arabia were determined through a high purity Germanium (HPGe) gamma-ray spectrometer. The estimated average values of Radon emanation coefficient and Radon mass exhalation rate for soil samples were 0.535 ± 0.016 and 50.063 ± 7.901 mBqkg-1h-1, respectively. The annual effective dose of radionuclides in all sampling locations was found to be lower than UNSCEAR's recommended level of 0.07 mSvy-1 for soil in an outdoor environment. In the secondary study, gross α and gross β activities in soil and date palm pits samples were measured by a low background α/β counting system. Average values of gross α and gross β activities in soil and date palm pits samples were 5.761 ± 0.360 Bqkg-1, 38.219 ± 8.619 Bqkg-1 and 0.556 ± 0.142 Bqkg-1, 24.266 ± 1.711 Bqkg-1, respectively.