• Title/Summary/Keyword: Exergy Analysis

Search Result 111, Processing Time 0.03 seconds

Experimental exergy assessment of ground source heat pump system

  • Ahmad, Saif Nawaz;Prakasha, Om
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.161-172
    • /
    • 2019
  • The principal intention of this experimental work is to confer upon the exergy study of GSHP associated with horizontal earth heat exchanger for space heating. The exergy analysis recognizes the assessment of the tendency of various energy flows and quantifies the extensive impression of inefficiencies in the system and its components. Consequently, this study intends to provide the enlightenment for well interpretation of exergy concept for GSHP. This GSHP system is composed of heat pump cycle, earth heat exchanger cycle and fan coil cycle. All the required data were measured and recorded when the experimental set up run at steady state and average of the measured data were used for exergy investigation purpose. In this study the rate at which exergy destructed at all the subsystems and system has been estimated using the analytical expression. The overall rational exergetic efficiency of the GSHP system was evaluated for estimating its effectiveness. Hence, we draw the exergy flow diagram by using the various calculated results. The result shows that in the whole system the maximum exergy destruction rate component was compressor and minimum exergy flow component was earth heat exchanger. Consequently, compressor and earth heat exchanger need to be pay more attention.

Suggestion of New Heat Tariff Assessment for District Heating Using Exergy (엑서지를 이용한 지역난방 열요금 제도 제안)

  • Moon, Jung-Hwan;Lee, Jae-Heon;Moon, Seung-Jae;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.912-918
    • /
    • 2008
  • In this study, the exergy which could be reflected on energetic and economic value was used to assess on heat tariff of district heating system instead of enthalpy. Exergy is difficult to apply directly to present heat charge system because of complex calculation. Therefore, the difference between supply and return temperature was converted to the exergy temperature difference for easily calculating the amount of heat. As a result of exergy analysis for a DH substation, the exergy temperature difference were not affected on surrounding temperature and pressure loss. Supply temperature, maximum difference between supply temperature and return temperature had a main effect on the exergy temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with previous heat charge. Heat charges in other seasons were almost same. It is thought that heat tariff using exergy will be appropriate in terms of both DH supplier and consumer.

  • PDF

Suggestion for a New Exergy-Based Heat-Tariff Assessment for a District-Heating System (엑서지를 이용한 지역난방 열요금 제도 제안)

  • Moon, Junghwan;Yoo, Hoseon;Lee, Jae-Heon;Moon, Seungjae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.202-211
    • /
    • 2017
  • In this study, the exergy that can be reflected in the energetic and economic values was used to assess the heat tariff of a district heating (DH) system instead of the enthalpy. It is difficult to directly apply the exergy to the current heat-charge system because of the complicated calculation; therefore, the difference between the supply and return temperatures was converted to the exergy-temperature difference for the ease of the heat-amount calculation. As a result of the exergy analysis for a DH substation, the exergy-temperature difference did not affect the surrounding temperature and pressure loss. The supply temperature and the maximum difference between the supply temperature and the return temperature exerted the main effect on the exergy-temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with the previous charge, but the heat charges in the other seasons are almost the same. It is concluded from the assessment of the heat tariff for which the exergy is used that this tariff is more feasible for both DH suppliers and consumers compared with enthalpy.

A Study on the Performance Improvement for The Coal Filing Power Station (엑서지분석을 통한 대용량 석탄화력 발전소의 성능개선 연구)

  • 서주오
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.165-176
    • /
    • 2003
  • In this study, the exergy analysis is conducted on the well known performance of already developed system and then compared with the efficiency of each equipment to propose optimum operation of the system. The system used in this study is 500 MW coal firing power plant. The efficiency of the boiler is 67% and the condenser is 99% by exergy analysis. The exergy consumption of the boiler was 32.95% at 100% load. The exergy consumption of the high pressure turbine and the low pressure turbine is 8.31% and 8.12%, respectively. Together with the concrete study on the object of performance revision of the low efficient development system proved in this study, if detailed exergy analysis on the operation condition of the equipments of the development system presently being operated is continued, then it is expected to help minimize the exergy consumption of relatively low efficient parts that are worn-out or miss-installed.

Exergy analysis of R717 high-efficiency OTEC power cycle for the efficiency and pressure drop in main components

  • Yoon, Jung-In;Son, Chang-Hyo;Yang, Dong-Il;Kim, Hyeon-Uk;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2013
  • In this paper, an analysis on exergy efficiency of high-efficiency R717 OTEC power system for the efficiency and pressure drop in main components were investigated theoretically in order to optimize the design for the operating parameters of this system. The operating parameters considered in this study include turbine and pump efficiency, and pressure drop in a condenser and evaporator, respectively. As the turbine efficiency of R717 OTEC power system increases, the exergy efficiency of this system increases. But pressure drop in the evaporator of R717 OTEC power system increases, the exergy efficiency of this system decreases, respectively. And, in case of exergy efficiency of this OTEC system, the turbine efficiency and pressure drop in a condenser on R717 OTEC power system is the largest and the lowest among operation parameters, respectively.

Exergy Analysis of Regenerative Steam-Injection Gas Turbine Systems (증기분사 재생 가스터빈 시스템의 엑서지 해석)

  • Kim, Kyoung-Hoon;Jung, Young-Guan;Han, Chul-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.45-54
    • /
    • 2009
  • An exergy analysis is carried out for the regenerative steam-injection gas turbine systems which has a potential of enhanced thermal efficiency and specific power. Using the analysis model in the view of the second law of thermodynamics, the effects of pressure ratio, steam injection ratio, ambient temperature and turbine inlet temperature are investigated on the performance of the system such as exergetic efficiency, heat recovery ratio of heat exchangers, exergy destruction, loss ratios, and on the optimal conditions for maximum exergy efficiency. The results of computation show that the regenerative steam-injection gas turbine system can make a notable enhancement of exergy efficiency and reduce irreversibilities of the system.

Exergy and Entransy Performance Characteristics of Cogeneration System in Series Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 직렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.637-645
    • /
    • 2020
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of a regenerative organic rankine cycle (ORC) and an additional process heater in a series circuit. Special attention is paid to the effects of the turbine inlet pressure, source temperature, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrance analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;KIM, KYOUNGJIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Exergy analysis on the power recovery of LNG supply system (냉열 에너지의 동력 회수에 대한 엑서지 해석 방법에 관한 연구)

  • Park, Il-Hwan;Kim, Choon-Seong
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • The expansion work that is wasted through the irreversible expansion through the PC valve of decompression process of the natural gas governor station can be recovered by replacing the process by an isentropic expansion. The energy and exergy analyses for the two decompression process models of power producing and current decompression process model are presented. Analysis results showed that the exergy by gas supply is 56.29%, the exergy by producing power is 32.12 % in case of preheating system and 22.52% in case of non-preheating system. The dead exergy at the PCV is generated much more network. As these results, the usefulness of exergy analysis is verified.

  • PDF

Exergy Analysis and Heat Exchanger Network Synthesis for Improvement of a Hydrogen Production Process: Practical Application to On-Site Hydrogen Refueling Stations (수소 생산 공정 개선을 위한 엑서지 분석과 열 교환망 합성: 분산형 수소 충전소에 대한 실용적 적용)

  • YUN, SEUNGGWAN;CHO, HYUNGTAE;KIM, MYUNGJUN;LEE, JAEWON;KIM, JUNGHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • In this study, the on-site hydrogen production process for refueling stations that were not energy-optimized was improved through exergy analysis and heat exchange network synthesis. Furthermore, the process was scaled up from 30 Nm3/h to 150 Nm3/h to improve hydrogen production capacity. Exergy analysis results show that exergy destruction in the SMR reactor and the heat exchanger accounts for 58.1 and 19.8%, respectively. Thus, the process is improved by modifying the heat exchange network to reduce the exergy loss in these units. As a result of the process simulation analysis, thermal and exergy efficiency is improved from 75.7 to 78.6% and 68.1 to 70.4%, respectively. In conclusion, it is expected to improve the process efficiency when installing on-site hydrogen refueling stations.