• Title/Summary/Keyword: Exciting coil

Search Result 40, Processing Time 0.027 seconds

A constant power and optimal power factor drive of doubly fed induction generator (이중여자 유도발전기의 정출력.최적역률 운전)

  • 이우석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.31-38
    • /
    • 2000
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFIG) has good adaptivity for that purpose. This paper deals with the speed, power, and power factor control using the Grid connected DFIG in the super-synchronous speed regions, by controlling frequency and voltage fed to the rotor. Power flow of the DFIG and steady-state algebraic equations of the equivalent circuit are analyzed. The wind turbine speed and constant stator power were controlled by the rotor exciting frequency. For a normal operating region, in which the generator ratings were not exceeded, rotor exciting frequency. For a normal operating region, in which the generator ratings were not exceeded, the rotor current was either less than or equal to the rated value. Accordingly, the optimal power factor can be selected relative to the permissible rated current at the rotor coil which controls the magnitude of the injected rotor voltage to the rotor according to a given rotor frequency. Consequently, it is possible to determine the optimal drive of a DFIG for wind power generation application.

  • PDF

Noise Analyses of VVVF Inverter and DC/DC Converter for Maglev Train (자기부상열차용 VVVF 인버터 및 DC/DC 컨버터의 소음해석)

  • 김현실;김재승;강현주;김봉기;김상렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.337-344
    • /
    • 2003
  • In DC/DC converter and VVVF inverter, which are the must dominant noise sources of Maglev train, noise is radiated from core and coil excited by MS(Magnetostriction). The main noise source of DC/DC converter is transformer whose spectrum shows strong peaks associated with harmonics of exciting frequency, On the other hand, LIM/VVVF noise is dominated by the harmonics of switching frequency, whereas harmonics of exciting frequency are not significant. As switching frequency is increased in VVVF inverter, it is shown that the harmonics are shifted to higher frequency range. If switching frequency is increased from 700㎐ to 2 ㎑, It is measured that noise can be reduced by 5 to 6 ㏈. Since complete mathematical description of MS phenomena is far beyond the present technology, vibration spectrum is investigated qualitatively in this paper, where effect of increasing switching frequency is confirmed.

A Study on the Performence improvment of Contactless Inductive Coupler for the Stocker System (반도체 제조장비용 무접점 Inductive Coupler의 성능개선을 위한 연구)

  • Kim, Hyun-Woo;Ban, Sang-Ho;Kwon, Ho;Park, Jae-Bum;Lee, Ju;Lee, Chul-Jik;Kim, Suk-Tae;Kim, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.923-925
    • /
    • 2002
  • The existing contactless inductive coupler has many problems because of its large volume and high level of exciting current, so a new contactless inductive coupler is being required under the circumstances and the load requirement. For a contactless inductive coupler in the manufacturing equipment of semiconductor, the coupler's efficiency is low because of its small magnetic inductance and large leakage inductance. Moreover, the high frequency switching to increase energy density per unit volume increases the iron loss and the eddy current loss, so it must be considered deeply when selecting core materials. Therefore, this paper presents core materials and shape to improve the performance of the contactless inductive coupler according to the coil positions.

  • PDF

A New Algorithm of B-waveform Control for the Measurement of Two-dimensional Magnetic Properties of Electrical Steel Sheets using Single Sheet Tester (SST를 이용한 전기강판의 2차원 자기특성 측정을 위한 새로운 자속밀도 파형 제어법)

  • Eum, Young-Hwan;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1167-1174
    • /
    • 2008
  • The measurement of two-dimensional magnetic properties of electrical steel sheet using single sheet tester (SST) requires to control the B-waveform as sinusoidal. The SST electric circuit, in general, has inductance, and this makes the phase lag in electric current. For this reason, the induced voltages of H- or B-coil may have phase difference from the exciting voltage. In this paper, a new algorithm is developed to compensate the phase difference and makes the B-waveform control efficient. The developed algorithm experimentally calculates the phase difference based on the measured waveform of the induced voltage for the magnetic field intensity along transverse direction. By using the proposed algorithm, the two-dimensional magnetic properties of grain-orientated electrical steel sheet (30PG110) is measured up to 2T. By comparing the measured B- and H-waveforms, the effectiveness of the proposed algorithm is proven.

Nondestructive Evaluation of Residual Life of 1Cr-1Mo-0.25V Steel by Reversible Magnetic Permeability

  • K. S. Ryu;S. H. Nahm;Kim, Y. I.;K. M. Yu;Kim, Y. B.;Y. Cho;D. Son
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.522-529
    • /
    • 2000
  • We present a new procedure to evaluate the residual life of 1Cr-1Mo-0.25V steel by reversible magnetic permeability. The method is based on the existence of the first harmonics in the differential magnetization around the coercive force. The apparatus is based on the detection of the voltage induced in a coil using a lock-in amplifier tuned to a frequency of the exciting one. Results obtained for the first harmonics and Vickers hardness on the aged samples show that the peak interval of reversible permeability and Vickers hardness decrease as ageing time increases. The correlation between Vickers hardness and the peak interval of the reversible permeability could well be used to evaluate the residual life of 1Cr-1Mo-0.25V steel, nondestructively.

  • PDF

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

Nondestructive Characterization for Remanent Life of Advanced Ferritic Steel by Reversible Permeability (가역투자율에 의한 첨단 페라이트강의 잔여수명에 대한 비파괴평가)

  • Hong, Seung-Pyo;Ryu, Kwon-Sang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • We present nondestructive characterization for remanent life of advanced ferritic steels, next-gen energy facility materials by reversible permeability. The reversible permeability is based on the theory that the value of reversible permeability is the same differential of the hysteresis loop. The measurement principle is based on the foundation of harmonics voltage induced in a sensing coil using a lock-in amplifier tuned to the frequency of the exciting one. The peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength(TS) of the aged samples decreased with aging time. We could estimate the remanent life of advanced ferritic steel by using the relationship between the peak interval of reversible permeability and Larson-Miller parameter(LMP), non-destructively.

Development of Liquid Density Measurement Sensor Using the Natural Frequency of a Pipe (파이프의 고유진동수를 이용한 액체밀도측정 센서개발)

  • Chang, Kyung-Ho;Lee, Yong-Jae;Kim, Kwang-Pyo;Ahn, Byung-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.9-14
    • /
    • 1995
  • For the development of liquid density measuring sensor using the natural frequency of a pipe, its principle and construction method were described. The stainless steel pipe, which has length of 32 cm, inside diameter of 2.3 cm and outside diameter of 2.5 cm, was used for the sensor. The exciting coil and the photo sensor were used to excite and to pick-up it, and the feedback circuit was designed to continue its vibrating. The natural frequency was consistent with the result of the spectrum analysis. It had a linearity of 0.0027 % and a sensitivity of 0.032 % in liquid density range from $0.8\;g/cm^{3}$ to $1.4\;g/cm^{3}$ and its frequency variation ratio was 0.024 $%/^{\circ}C$ in temperature range from $10^{\circ}C$ to $35^{\circ}C$.

  • PDF

Nondestructive Evaluation of Remanent Life of Turbine Rotor Steel by Measuring Reversible Magnetic Permeability (가역투자율 측정에 의한 터빈로터강의 비파괴적 잔여수명 평가)

  • Ryu, Kwon-Sang;Nahm, Seung-Hoon;Kim, Yong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.315-321
    • /
    • 2003
  • The integrity of the turbine rotors can be assessed by measuring the material properties at service temperature. In order to evaluate the remanent life of turbine rotor steel nondestructively, a measurement system of reversible magnetic permeability using an alternating perturbing magnetic field was constructed. We present a new non-destructive method to evaluate the remanent life of 1Cr-1Mo-0.25V steel using the value of reversible magnetic permeability. This method is based on the existence of reversible magnetic permeability in the differential magnetization around the coercive field strength. We measured the first harmonics voltage induced in a coil using a lock-in amplifier tuned to an exciting frequency. The Results of reversible magnetic Permeability and Wickers hardness on the aged samples show that the peak interval of reversible magnetic permeability (PIRMP) and Vickers hardness decreases as aging time increases. A softening curve is obtained from the correlation between Vickers hardness and the PIRMP. This curve can be used as a non-destructive method to evaluate the remanent life of turbine rotor steel.

Major B-H Loop Measurement of Toroidal Shape Magnetic Powder Core (토로이드형 분말코어의 Major B-H Loop 측정)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.76-80
    • /
    • 2014
  • Toroidal cores made of metallic powder requires large magnetic field strength up to few decade kA/m to obtain major hysteresis loop. To overcome thermal heat generation problem from large exciting current during measurement, we have employed a real time hysteresis loop tracer which can digitize and calculate B-H signals in personal computer as real time. For example, when we magnetize specimen at 10 Hz frequency, we could display hysteresis loops 10 times per second. Using the real time hysteresis loop tracer, we could measure major hysteresis loop of toroidal shape metallic powder core at maximum flux density or maximum magnetic field strength to be measured within 5 second not to significant increasement of specimen temperature due to the heat dissipation from coil windings. For the constructed hysteresis loop tracer, we could measure hysteresis loop at magnetic field strength higher than 50 kA/m for the toroidal shape specimen.