• Title/Summary/Keyword: Excited state

Search Result 463, Processing Time 0.028 seconds

Energy Transfer Fluorescence Quenching of $Pr^{3+}$ in LaOCI

  • Kim, Taesam;Ha, Younggu
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.125-129
    • /
    • 1995
  • The energy transfer is observed in double-activator-doped LaOCl:Pr, Tb and LaOCl:Pr, Eu system. From laser excitation and fluorescence spectra, a peculiar process for energy transfer between the activators is found. The energy absorbed by $Tb^{3+}$ is directly transferred to $Pr^{3+}$ ion. A cascade relaxation of an excited $Pr^{3+}$ level to lower level, $^1D_2$ is induced by $Eu^{3+}$, $Tb^{3+}$, which has $^7F_J$ ground levels like $Eu^{3+}$ ion, does not affect the cascade relaxation. The result represents that the quantum state of ion is not absolute condition for the energy transfer and that the energy transfer is competitive between levels of activator when the activator ions are closely located.

  • PDF

Phototoxicity: Its Mechanism and Animal Alternative Test Methods

  • Kim, Kyuri;Park, Hyeonji;Lim, Kyung-Min
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • The skin exposure to solar irradiation and photoreactive xenobiotics may produce abnormal skin reaction, phototoxicity. Phototoxicity is an acute light-induced response, which occurs when photoreacive chemicals are activated by solar lights and transformed into products cytotoxic against the skin cells. Multifarious symptoms of phototoxicity are identified, skin irritation, erythema, pruritis, and edema that are similar to those of the exaggerated sunburn. Diverse organic chemicals, especially drugs, are known to induce phototoxicity, which is probably from the common possession of UV-absorbing benzene or heterocyclic rings in their molecular structures. Both UVB (290~320 nm) and UVA (320~400 nm) are responsible for the manifestation of phototoxicity. Absorption of photons and absorbed energy (hv) by photoactive chemicals results in molecular changes or generates reactive oxygen species and depending on the way how endogenous molecules are affected by phototoxicants, mechanisms of phototoxcity is categorized into two modes of action: Direct when unstable species from excited state directly react with the endogenous molecules, and indirect when endogeneous molecules react with secondary photoproducts. In order to identify phototoxic potential of a chemical, various test methods have been introduced. Focus is given to animal alternative test methods, i.e., in vitro, and in chemico assays as well as in vivo. 3T3 neutral red uptake assay, erythrocyte photohemolysis test, and phototoxicity test using human 3-dimensional (3D) epidermis model are examples of in vitro assays. In chemico methods evaluate the generation of reactive oxygen species or DNA strand break activity employing plasmid for chemicals, or drugs with phototoxic potential.

A Study on Characteristics of Temperature and Radicals in Laminar Non-premixed H2/N2 Flame Using LIPF and LRS (레이저 유도 선해리 형광법과 래일레이 산란법에 의한 층류 비예혼합 수소/질소 화염의 온도 및 라디칼 특성에 관한 연구)

  • Jin, Seong Ho;Park, Kyoung Suk;Kim, Gun Hong;Kim, Gyung Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.3
    • /
    • pp.169-180
    • /
    • 2002
  • Rayleigh scattering and laser induced predissociative fluorescence are used to obtain two-dimensional images of temperature and species concentration in a laminar non-premixed flame of a diluted hydrogen jet. Rayleigh scattering cross-sections are experimentally obtained at 248nm. Planar images of OH and $O_2$ with tunable KrF excimer laser which has a) $0.5cm^{-1}$ linewidth, b) 0.5nm tuning range, c) 150mJ pulse energy, and d) 20ns pulse width are obtained to determine spatial distributions of OH and $O_2$. The technique is based on planar laser induced predissociative fluorescence (PLIPF) in which collisional quenching is almost avoided because of the fast predissociation. Dispersed LIPF spectra of OH and $O_2$ are also measured in a flame in order to confirm the excitation of single vibronic state of OH and $O_2$. OH and $O_2$ are excited on the $P_2$(8) and $Q_1$(11) line of the $A^2{\Sigma}^{+}({\nu}^{'}=3)-X^{2}{\Pi}({\nu}^{''}=o)$ band and R(17) line of the Schumann-Runge band $B^{3}{\Sigma}_{u}{^-}(\nu^{'}=0)-X^{3}{\Sigma}_{g}{^-}({\nu}^{''}=6)$, respectively. Fluorescence spectra of OH and Hot $O_2$ are captured and two-dimensional images of the hydrogen flame field are successfully visualized.

Spectroscopic Analyses of Rose Bengal Sensitized and NaI Supersensitized Photocurrent (Rose Bengal 감응 및 NaI 초감응 광전류의 분광학적 분석)

  • Yoon Kil-Joong;Min Hyun-Jin;Kim Kang-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.107-112
    • /
    • 1992
  • Electron injection from excited rose bengal into the conduction band of a thin film of $SnO_2$ semiconductor in acetonitrile was investigated in an electrochemical cell, ITO/$SnO_2$/rose bengal, NaI or $I_2$, $NaClO_4$/Pt. It was observed that NaI enhanced the supersensitized photocurrent, followed by the slow reduction, whereas $I_2$ yielded a fast decaying photocurrent. Spectroscopic analyses of the dye solution containing NaI revealed that electron is transferred to the $SnO_2$ electrode from the reduced rose bengal and iodide is responsible for the reduction of the dye in triplet state. However $I_2$ appears to possess neither the reducing ability of the oxidized dye nor the retardation of the dehalogenation of RB.

  • PDF

Quenching of Ofloxacin and Flumequine Fluorescence by Divalent Transition Metal Cations

  • Park, Hyoung-Ryun;Oh, Chu-Ha;Lee, Hyeong-Chul;Choi, Jae-Gyu;Jung, Beung-In;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2002-2010
    • /
    • 2006
  • This study examined the quenching of ofloxacin (OFL) and flumequine (FLU) fluorescence by $Cuj^{2+}$, $Ni^{2+}$, $Co^{2+}$ and $Mn^{2+}$ in an aqueous solution. The change in the fluorescence intensity and lifetime was measured at various temperatures as a function of the quencher concentration. According to the Stern-Volmer plots, the fluorescence emission was quenched by both collisions (dynamic quenching) and complex formation (static quenching) with the same quencher but the effect of static quenching was larger than that of dynamic quenching. Large static and dynamic quenching constants for both OFL and FLU support significant ion-dipole and orbital-orbital interactions between fluorophore and quencher. For both molecules, the static and dynamic quenching constants by $Cu^{2+}$ were the largest among all the metal quenchers examined in this study. In addition, both the static and dynamic quenching mechanisms by $Cu^{2+}$ were somewhat different from the quenching caused by other metals. Between $Ni^{2+}$ and FLU, a different form of chemical interaction was observed compared with the interaction by other metals. The change in the absorption spectra as a result of the addition of a quencher provided information on static quenching. With all these metals, the static quenching constant of FLU was larger than those of OFL. The fluorescence of OFL was quite insensitive to both the dynamic and static quenching compared with FLU. This property of OFL can be explained by the twisted intramolecular charge transfer in the excited state.

Cross Talk Experiment with Two-element CdTe Detector and Collimator for BNCT-SPECT

  • Manabe, Masanobu;Ohya, Ryosuke;Saraue, Nobuhide;Sato, Fuminobu;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.328-332
    • /
    • 2016
  • Background: Boron Neutron Capture Therapy (BNCT) is a new radiation therapy. In BNCT, there exists some very critical problems that should be solved. One of the severest problems is that the treatment effect cannot be known during BNCT in real time. We are now developing a SPECT (single photon emission computed tomography) system (BNCT-SPECT), with a cadmium telluride (CdTe) semiconductor detector. BNCT-SPECT can obtain the BNCT treatment effect by measuring 478 keV gamma-rays emitted from the excited state of $^7Li$ nucleus created by $^{10}B(n,{\alpha})$ $^7Li$ reaction. In the previous studies, we investigated the feasibility of the BNCT-SPECT system. As a result, the S/N ratio did not meet the criterion of S/N > 1 because deterioration of the S/N ratio occurred caused by the influence of Compton scattering especially due to capture gamma-rays of hydrogen. Materials and Methods: We thus produced an arrayed detector with two CdTe crystals to test cross talk phenomenon and to examine an anti-coincidence detection possibility. For more precise analysis for the anti-coincidence detection, we designed and made a collimator having a similar performance to the real BNCT-SPECT. Results and Discussion: We carried out experiments with the collimator to examine the effect of cross talk of scattering gamma-rays between CdTe elements more practically. As a result of measurement the coincidence events were successfully extracted. Conclusion: We are now planning to carry out evaluation of coincidence rate from the measurement and comparison of it with the numerical calculations.

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

Picosecond Dynamics of CN--Ligated Ferric Cytochrome c after Photoexcitation Using Time-resolved Vibrational Spectroscopy

  • Kim, Joo-Young;Park, Jae-Heung;Chowdhury, Salina A.;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3771-3776
    • /
    • 2010
  • The dynamics of the $CN^-$-ligated ferric cytochrome c (CytcCN) in $D_2O$ at 283 K following Q-band photoexcitation at 575 nm was observed using femtosecond time-resolved vibrational spectroscopy. The equilibrium vibrational spectrum of the CN stretching mode of CytcCN shows two overlapping bands: one main band (82%) at $2122\;cm^{-1}$ with $23\;cm^{-1}$ full width at half maximum (fwhm) and the other band (18%) at $2116\;cm^{-1}$ with $7\;cm^{-1}$ fwhm. The time-resolved spectra show bleaching of the CN fundamental mode of CytcCN and two absorption features at lower energies. The bleach signal and both absorption features are all formed within the time resolution of the experiment (< 200 fs) and decay with a life time of 1.9 ps. One transient absorption feature, appearing immediately red to the bleach signal, results from the thermal excitation of low-frequency modes of the heme that anharmonically couple to the CN fundamental mode, thereby shifting the CN mode to lower energies. The shift of the CN mode decays with a lifetime of 2 ps, equivalent to the time scale for vibrational cooling of the low-frequency heme modes. The other transient absorption feature, which is 3.3 times weaker than the bleach signal and shifted $27\;cm^{-1}$ toward lower energies, is attributed to the CN mode in an electronically excited state where the CN bond is weakened with a lowered extinction coefficient. These observations suggest that photoexcited CytcCN mainly undergoes ultrafast radiationless relaxation, causing photo-deligation of $CN^-$ from CytcCN highly inefficient. As also observed in $CN^-$-ligated myoglobin, inefficient ligand photodissociation might be a general property of $CN^-$-ligated ferric hemes.

Study on optical emission spectroscopic method for measuring OH radical distribution in rocket plume (로켓 플룸 내부 OH 라디칼 공간분포 계측을 위한 발광 분광 기법에 관한 연구)

  • Han, Kiwook;Hahn, Jae W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1135-1139
    • /
    • 2017
  • Spatial distribution of chemical species in flame is a important indicator understanding the flame structure and combustion characteristics, and optical emission spectroscopy has been widely used for the measurement because of its simple and non-intrusive methodology. In this study, we suggest the feasibility of the measurement of chemical species (OH radical) distribution in rocket plume using optical emission spectrometer which was developed for the spatially resolved measurement along the line-of-sight. In order to predict the ground state concentration of species from the measured emission intensity by optical emission spectrometer, we consider thermal and chemical excitation mechanisms in flame, and assume thermodynamic equilibrium for the thermally excited species. We also present the spatial resolution and the correction of collection characteristics of the optical emission spectrometer depending on object distance.

  • PDF

Sonocatalytic Degradation of Rhodamine B in the Presence of TiO2 Nanoparticles by Loading WO3

  • Meng, Ze-Da;Sarkar, Sourav;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.6-12
    • /
    • 2014
  • In the present work, $WO_3$ and $WO_3-TiO_2$ were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of $WO_3-TiO_2$ sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the $WO_3-TiO_2$ composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a $WO_3$ coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing $TiO_2$ response to ultrasonic radiations. In case of the addition of $WO_3$ as new matter, the excited electrons from the $WO_3$ particles are quickly transferred to $TiO_2$ particle, as the conduction band of $WO_3$ is 0.74 eV which is -0.5 eV more than that of $TiO_2$. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of $TiO_2$ nanoparticles was improved by loading $WO_3$.