Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.12.3771

Picosecond Dynamics of CN--Ligated Ferric Cytochrome c after Photoexcitation Using Time-resolved Vibrational Spectroscopy  

Kim, Joo-Young (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Park, Jae-Heung (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Chowdhury, Salina A. (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Lim, Man-Ho (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Publication Information
Abstract
The dynamics of the $CN^-$-ligated ferric cytochrome c (CytcCN) in $D_2O$ at 283 K following Q-band photoexcitation at 575 nm was observed using femtosecond time-resolved vibrational spectroscopy. The equilibrium vibrational spectrum of the CN stretching mode of CytcCN shows two overlapping bands: one main band (82%) at $2122\;cm^{-1}$ with $23\;cm^{-1}$ full width at half maximum (fwhm) and the other band (18%) at $2116\;cm^{-1}$ with $7\;cm^{-1}$ fwhm. The time-resolved spectra show bleaching of the CN fundamental mode of CytcCN and two absorption features at lower energies. The bleach signal and both absorption features are all formed within the time resolution of the experiment (< 200 fs) and decay with a life time of 1.9 ps. One transient absorption feature, appearing immediately red to the bleach signal, results from the thermal excitation of low-frequency modes of the heme that anharmonically couple to the CN fundamental mode, thereby shifting the CN mode to lower energies. The shift of the CN mode decays with a lifetime of 2 ps, equivalent to the time scale for vibrational cooling of the low-frequency heme modes. The other transient absorption feature, which is 3.3 times weaker than the bleach signal and shifted $27\;cm^{-1}$ toward lower energies, is attributed to the CN mode in an electronically excited state where the CN bond is weakened with a lowered extinction coefficient. These observations suggest that photoexcited CytcCN mainly undergoes ultrafast radiationless relaxation, causing photo-deligation of $CN^-$ from CytcCN highly inefficient. As also observed in $CN^-$-ligated myoglobin, inefficient ligand photodissociation might be a general property of $CN^-$-ligated ferric hemes.
Keywords
$CN^-$-Ligated cytochrome c; Femtosecond vibrational spectroscopy; Ferric cytochrome c; Picosecond dynamics; Q-band photoexcitation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Walda, K. N.; Liu, X. Y.; Sharma, V. S.; Magde, D. Biochemistry 1994, 33, 2198.   DOI   ScienceOn
2 Ye, X.; Yu, A.; Champion, P. M. J. Am. Chem. Soc. 2006, 128, 1444.   DOI   ScienceOn
3 Ye, X.; Yu, A.; Georgiev, G. Y.; Gruia, F.; Ionascu, D.; Cao, W.; Sage, J. T.; Champion, P. M. J. Am. Chem. Soc. 2005, 127, 5854.   DOI   ScienceOn
4 Hamm, P.; Ohline, S. M.; Zinth, W. J. Chem. Phys. 1997, 106,519.   DOI   ScienceOn
5 Helbing, J.; Bonacina, L.; Pietri, R.; Bredenbeck, J.; Hamm, P.; van Mourik, F.; Chaussard, F. i.; Gonzalez-Gonzalez, A.; Chergui, M.; Ramos-Alvarez, C.; Ruiz, C.; Lopez-Garriga, J. Biophys. J. 2004, 87, 1881.   DOI   ScienceOn
6 Horecker, B. L.; Kornberg, A. J. Biol. Chem. 1946, 165, 11.
7 George, P.; Tsou, C. L. Biochem. J. 1952, 50, 440.
8 Petrich, J. W.; Poyart, C.; Martin, J. L. Biochemistry 1988, 27, 4049.   DOI   ScienceOn
9 Reddy, K. S.; Yonetani, T.; Tsuneshige, A.; Chance, B.; Kushkuley, B.; Stavrov, S. S.; Vanderkooi, J. M. Biochemistry 1996, 35, 5562.   DOI   ScienceOn
10 Boffi, A.; Chiancone, E.; Peterson, E. S.; Wang, J.; Rousseau, D.L.; Friedman, J. M. Biochemistry 1997, 36, 4510.   DOI   ScienceOn
11 Negrerie, M.; Cianetti, S.; Vos Marten, H.; Martin, J.-L.; Kruglik Sergei, G. J. Phys. Chem. B 2006, 110, 12766.   DOI   ScienceOn
12 Bolognesi, M.; Rosano, C.; Losso, R.; Borassi, A.; Rizzi, M.; Wittenberg, J. B.; Boffi, A.; Ascenzi, P. Biophys. J. 1999, 77, 1093.   DOI   ScienceOn
13 Yao, Y.; Qian, C.; Ye, K.; Wang, J.; Bai, Z.; Tang, W. J. Biol.Inorg. Chem. 2002, 7, 539.   DOI   ScienceOn
14 Antonini, E.; Brunori, M. Hemoglobin and Myoglobin in Their Reactions With Ligands; North-Holland Publishing Company: London, UK, 1971.
15 Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I. C. Biochemistry 1975, 14, 5355.   DOI   ScienceOn
16 Kim, J.; Park, J.; Lee, T.; Lim, M. J. Phys. Chem. B 2009, 113, 260.   DOI   ScienceOn
17 Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr. Chem.Rev. 1994, 94, 699.   DOI   ScienceOn
18 Ansari, A.; Berendzen, J.; Braunstein, D. K.; Cowen, B. R.; Frauenfelder, H.; Hong, M. K.; Iben, I. E. T.; Johnson, J. B.; Ormos, P.; Sauke, T. B.; Scholl, R.; Schulte, A.; Steinbach, P. J.; Vittitow, J.; Young, R. D. Biophys. Chem. 1987, 26, 337.   DOI   ScienceOn
19 Balasubramanian, S.; Lambright, D. G.; Marden, M. C.; Boxer, S.G. Biochemistry 1993, 32, 2202.   DOI   ScienceOn
20 Cornelius, P. A.; Steele, A. W.; Chernoff, D. A.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. USA 1981, 78, 7526.   DOI
21 Henry, E. R.; Sommer, J. H.; Hofrichter, J.; Eaton, W. A. J. Mol.Biol. 1983, 166, 443.   DOI
22 Morishima, I.; Inubushi, T. FEBS Lett 1977, 81, 57.   DOI   ScienceOn
23 Kim, S.; Jin, G.; Lim, M. J. Phys. Chem. B 2004, 108, 20366.   DOI   ScienceOn
24 Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Chem. Phys. 1997, 107, 10523.   DOI   ScienceOn
25 Varhac, R.; Antalik, M. J. Biol. Inorg. Chem. 2008, 13, 713.   DOI
26 Danielsson, J.; Meuwly, M. ChemPhysChem 2007, 8, 1077.   DOI   ScienceOn
27 Danielsson, J.; Meuwly, M. J. Phys. Chem. B 2007, 111, 218.   DOI   ScienceOn
28 Takano, T.; Kallai, O. B.; Swanson, R.; Dickerson, R. E. J. Biol.Chem. 1973, 248, 5234.
29 Sutin, N.; Yandell, J. K. J. Biol. Chem. 1972, 247, 6932.
30 Brautigan, D. L.; Feinberg, B. A.; Hoffman, B. M.; Margoliash, E.; Preisach, J.; Blumberg, W. E. J. Biol. Chem. 1977, 252, 574.
31 Lee, T.; Park, J.; Kim, J.; Joo, S.; Lim, M. Bull. Korean Chem.Soc. 2009, 30, 177.   DOI   ScienceOn
32 Hamm, P.; Kaindl, R. A.; Stenger, J. Opt. Lett. 2000, 25, 1798.   DOI
33 Glasoe, P. K.; Long, F. A. J. Phys. Chem. 1960, 64, 188.   DOI
34 Yoshikawa, S.; O'Keeffe, D. H.; Caughey, W. S. J. Biol. Chem. 1985, 260, 3518.
35 Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Phys. Chem. 1996, 100, 12043.   DOI   ScienceOn
36 Mizutani, Y.; Kitagawa, T. Science 1997, 278, 443.   DOI   ScienceOn
37 Moore, J. N.; Hansen, P. A.; Hochstrasser, R. M. Proc. Natl. Acad.Sci. USA 1988, 85, 5062.   DOI   ScienceOn
38 Ansari, A.; Szabo, A. Biophys. J. 1993, 64, 838.   DOI   ScienceOn
39 Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Am. Chem. Soc. 2004, 126, 7946.   DOI   ScienceOn
40 Locke, B.; Lian, T.; Hochstrasser, R. M. Chem. Phys. 1991, 158, 409.   DOI   ScienceOn
41 Martin, J. L.; Migus, A.; Poyart, C.; Lecarpentier, Y.; Astier, R.; Antonetti, A. Proc. Natl. Acad. Sci. USA 1983, 80, 173.   DOI   ScienceOn
42 Petrich, J. W.; Lambry, J. C.; Kuczera, K.; Karplus, M.; Poyart, C.; Martin, J. L. Biochemistry 1991, 30, 3975.   DOI   ScienceOn