• 제목/요약/키워드: Excitation temperature

검색결과 346건 처리시간 0.032초

Doherty 증폭기의 열 메모리 효과 모델링과 보상 (Thermal Memory Effect Modeling and Compensation in Doherty Amplifier)

  • 이석희;이상호;방성일
    • 대한전자공학회논문지TC
    • /
    • 제42권9호
    • /
    • pp.49-56
    • /
    • 2005
  • RF 전력증폭기 및 Doherty 전력증폭기의 열 메모리 효과는 변조신호의 대역폭과 동작 전력의 레벨에 따라 민감하게 영향을 미친다. 본 논문에서는 전기적인 비선형성을 정확히 모델링하고 열 메모리 효과가 Doherty 증폭기의 왜곡형성에 어떤 영향을 미치는지에 대해 연구하였다. Doherty 증폭기의 열 메모리 특성을 모델링하기 위하여 순시적으로 소모되는 전력과 순시 접합온도의 정확한 관계식을 정립하여 제안하였다. 제안된 모델의 파라미터는 서로 다른 여기상태에 따라 전력증폭기의 특성이 결정되는데, 트랜지스터의 열 메모리 효과는 대역폭이 넓은 W-CDMA 및 UMTS 시스템에서 충분히 고려되어야 한다. 이러한 열 메모리 효과를 사전왜곡 함수에 적응하여 선형화된 전력증폭기의 출력스펙트럼에서 최대 20 dB정도의 ACLR 개선효과를 보인다. 측정결과는 60W급 LDMOS Doherty 전력증폭기로 측정하였으며, 열 메모리 보상기는 ADS로 검증하였다.

헬륨 마이크로파 플라즈마 토치의 개발과 특성에 관한 연구 (Development and Characterization of Helium Microwave Plasma Torch)

  • 조경현;박용남
    • 대한화학회지
    • /
    • 제44권6호
    • /
    • pp.573-580
    • /
    • 2000
  • MPT는 최근에 개발된 마이크로파 플라즈마로서 수용매에 강하다. 여러 가지의 변형된 형태의 MPT를 개발하여 구조에 따른 플라즈마의 방전되는 형태를 조사한 결과 이중관 토치는 플라즈마 기체를 적게 소모하며 쉽게 플라즈마가 형성되었으나 토치의 끝이 높은 온도에 견디지 못하고 쉽게 상했다. ICP토치와 같은 형태의 삼중관 토치에 석영관을 중심관으로 사용할 때 가장 안정되고 대칭적인 플라즈마를 형성할 수 있었다. 바탕선을 조사해 본 결과 He MPT는 대기 중으로 돌출되어 대기와 많이 혼합되고 질소에 의해 quenching되는 것으로 보여진다. Membrane desolvator를 탈용매화 장치로 사용하여 헬륨 MPT의 감도를 조사해 본 결과 아르곤 MPT와 비교할 때 대부분의 원소에 대해 검출한계가 10배 이상 높았다. 그러나 여기 에너지가 높은 원소는 비교적 효율적으로 검출할 수 있었다. 헬륨 마이크로파 플라즈마는 적은 양의 플라즈마 기체만 필요하여(약 1.6 L/min) 경제적이며 매우 안정된 형태를 보여주었다. 플라즈마의 분광특성을 조사한 결과 들뜸온도 4950K, 전자밀도 $3.28{\times}10^{14}cm^{-3}$로 측정되었다.

  • PDF

Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD

  • Lee, Yun-Ji;Cha, Ji-Min;Yoon, Chang-Bun;Lee, Seong-Eui
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.55-60
    • /
    • 2018
  • In this study, quantum dots composed of $Mn^{2+}$ doped ZnS core and ZnS shell were synthesized using MPA precursor at room temperature. The ZnS: Mn/ZnS quantum dots were prepared by varying the content of MPA in the synthesis of ZnS shells. XRD, Photo-Luminescence (PL), XPS and TEM were used to characterize the properties of the ZnS: Mn/ZnS quantum dots. As a result of PL measurement using UV excitation light at 365 nm, the PL intensity was found to greatly increase when MPA was added at 15 ml, compared to the case with no MPA; the PL peaks shifted from 603 nm to 598 nm. A UV sensor was fabricated by using a sputtering process to form a Pt pattern and placing a QD on the Pt pattern. To verify the characteristics of the sensor, we measured the electrical properties via irradiation with UV, Red, Green, and Blue light. As a result, there were no reactions for the R, G, and B light, but an energy of 3.39 eV was produced with UV light irradiation. For the sensor using ZnS: Mn/ZnS quantum dots, the maximum current (A) value decreased from $4.00{\times}10^{-11}$ A to $2.62{\times}10^{-12}$ A with increasing of the MPA content. As the MPA content increases, the PL intensity improves but the electrical current value dropped because of the electron confinement effect of the core-shell.

고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구 (Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction)

  • 유현희;;원형일;원창환
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

원거리 플라즈마 화학증착법으로 증착된 이산화규소박막의 물성 (Properties of $SiO_2$Deposited by Remote Plasma Chemical Vapor Deposition(RPCVD))

  • 박영배;강진규;이시우
    • 한국재료학회지
    • /
    • 제5권6호
    • /
    • pp.706-714
    • /
    • 1995
  • 원거리 플라즈마 화학증착법을 이용하여 저온에서 이산화규소박막을 제조하였다. 본 연구 에서는 공정변수인 기판의 온도, 반응기체의 조성 및 분압과 플라즈마 전력에 따른 산화막의 재료적인 물성을 평가하였다. XPS결과에서 산화막은 양론비(O/Si=2)보다 약간 적어 실리콘이 많이 함유된 막으로 나타났다. 이 경우 굴절율과 ESR분석에 의해 미결합된 실리콘의 양이 증가함을 알 수 있었다. SIMS분석에 의해 미량의 질소성분이 계면에 존재하는 것과 실리콘 미결함을 관찰하였다. FT-IR로부터 막내 수소량을 정량화하였으며 결합각 분포는 20$0^{\circ}C$이상에서 열산화막과 비슷한 값을 얻었다. 하지만 열산화막에 비해 높은 식각율을 보여 계면 스트레스에 의해 막내의 결합력이 약해진 것으로 생각된다.

  • PDF

국산 천연알카리 장석의 결정구조와 Photoluminescence (Crystal Structure and Photoluminescence of Domestic Natural Alkaline Feldspar)

  • 최진호;천채일;김정석
    • 한국세라믹학회지
    • /
    • 제44권5호
    • /
    • pp.155-159
    • /
    • 2007
  • Blue light-emitting phosphors having the excitation spectrum range of the medium-long ultraviolet ($280nm{\sim}400nm$) have been prepared by solid state reaction method. As a starting material the natural alkaline feldspar powder produced from the domestic mine field in Buyeo, Chungnam-do. The photoluminescence characteristics and crystal structures have been analyzed for the phosphor samples. The powder mixture of the natural alkaline feldspar and the rare-earth oxide was calcined at $800{\sim}1000^{\circ}C\;for\;3{\sim}4h$ in air. The calcined samples we fully ground at room temperature and then heat-treated in the mild reducing gas atmosphere of $5%H_2-95%N_2$ mixture at $1100{\sim}1150^{\circ}C\;for\;3{\sim}4h$. The natural alkaline feldspar material consists of the monoclinic orthoclase ($KAlSi_3O_8$) and the triclinic albite ($NaAlSi_3O_8$) phases. At the $0.5wt%Eu_2O_3$ addition the PL spectrum showed the maximum intensity and with further increase of $Eu_2O_3$ the PL intensity decreased. The albite phase disappeared in the $Eu_2O_3$ doped phosphors. The effect of the co-doped activator on the PL characteristics have been also discussed.

SF6/N2 혼합기체의 DC 플라즈마 특성 분석 (The Analysis of DC Plasmas Characteristics on SFSF6 and N2 Mixture Gases)

  • 소순열
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1485-1490
    • /
    • 2014
  • $SF_6$ gas has been used for power transformers or gas insulated switchgears, because it has the superior insulation property and the stable structure chemically. It has been, however, one of global warming gases and required to reduce the its amount. Some papers have reported that its amount could be reduced by mixing with other gases, such as $N_2$, $CF_4$, $CO_2$ and $C_4F_8$ and their mixture gases would cause the synergy effect. In this paper, we investigated the characteristics of DC plasmas on $SF_6$ mixture gases with $N_2$ at atmospheric pressure. $N_2$ gas is one of cheap gases and has been reported to show the synergy effect with mixing $SF_6$ gas, even though $N_2$ plasmas have electron-positive characteristics. 38 kinds of $SF_6/N_2$ plasma particles, which consisted of an electron, two positive ions, five negative ions, 30 excitation and vibration particles, were considered in a one dimensional fluid simulation model with capacitively coupled plasma chamber. The results showed that the joule heating of $SF_6/N_2$ plasmas was mainly caused by positive ions, on the other hand electrons acted on holding the $SF_6/N_2$ plasmas stably. The joule heating was strongly generated near the electrodes, which caused the increase of neutral gas temperature within the chamber. The more $N_2$ mixed-ratio increased, the less joule heating was. And the power consumptions by electron and positive ions increased with the increase of $N_2$ mixed-ratio.

N2/NH3/SiH4 유도 결합형 플라즈마의 압력과 혼합가스 비율에 따른 이온 및 중성기체 밀도 분포 (Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio))

  • 서권상;김동현;이호준
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.370-378
    • /
    • 2017
  • A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.

Optical emission analysis of hybrid air-water discharges

  • Pavel, Kostyuk;Park, J.Y.;Han, S.B.;Koh, H.S.;Gou, B.K.;Lee, H.W.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.521-522
    • /
    • 2006
  • In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen yield. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates, and point-to-plane electrode gap distance. The primary focus of this experiment was put on the optical emission of the near UV range, with the energy threshold sufficient for water dissociation and excitation. The $OH(A^{2+},'=0\;X^2,"=0$) band's optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. In the gaseous atmosphere saturated with water vapor the OH(A-X) band intensity was relatively high compared to the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. In the gaseous phase discharge phenomenon for Ar carrier gas transformed into a gliding arc via the flow rate growth. OH(A-X) band's intensity increased according to the flow rate or residence time of He feeding gas. Reciprocal tendency was acquired for $N_2$ and Ar carrier gases. The peak value of OH(A-X) intensity was observed in the proximity of the water surface, however in the cases of Ar and $N_2$ with 0.5 SLM flow rate peaks shifted to the region below the water surface. Rotational temperature ($T_{rot}$) was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which corresponds to the arc-like-streamer discharge.

  • PDF

Single Carrier Spectroscopy of Bisolitons on Si(001) Surfaces

  • Lyo, In-Whan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.13-13
    • /
    • 2010
  • Switching an elementary excitation by injecting a single carrier would offer the exciting opportunity for the ultra-high data storage technologies. However, there has been no methodology available to investigate the interaction of low energy discrete carriers with nano-structures. In order to map out the spatial dependency of such single carrier level interactions, we developed a pulse-and-probe algorithm, combining with low temperature scanning tunneling microscopy. The new tool, which we call single carrier spectroscopy, allows us to track the interaction with the target macrostructure with tunneling carriers on a single carrier basis. Using this tool, we demonstrate that it is possible not only to locally write and erase individual bi-solitons, reliably and reversibly, but also to track of creation yields of single and multiple bi-solitons. Bi-solitons are pairs of solitons that are elementary out-of-phase excitations on anti-ferromagnetically ordered pseudo-spin system of Si dimers on Si(001)-c(42) surfaces. We found that at low energy tunneling the single bisoliton creation mechanism is not correlated with the number of carriers tunneling, but with the production of a potential hole under the tip. An electric field at the surface determines the density of the local charge density under the tip, and band-bending. However a rapid, dynamic change of a field produces a potential hole that can be filled by energetic carriers, and the amount of energy released during filling process is responsible for the creation of bi-solitons. Our model based on the field-induced local hole gives excellent explanation for bi-soliton yield behaviors. Scanning tunneling spectroscopy data supports the existence of such a potential hole. The mechanism also explains the site-dependency of bi-soliton yields, which is highest at the trough, not on the dimer rows. Our study demonstrates that we can manipulate not just single atoms and molecules, but also single pseudo-spin excitations as well.

  • PDF