• Title/Summary/Keyword: Excitation system

Search Result 1,556, Processing Time 0.029 seconds

Ambient Vibration Testing and System Identification for Tall Buildings (고층건물의 자연 진동실험 및 시스템판별)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.23-33
    • /
    • 2012
  • Dynamic response measurements from natural excitation were carried out for three 18-story office buildings to determine their inherent properties. The beam-column frame system was adopted as a typical structural form, but a core wall was added to resist the lateral force more effectively, resulting in a mixed configuration. To extract modal parameters such as natural frequencies, mode shapes and damping ratios from a series of vibration records at each floor, the most advanced operational system identification methods based on frequency- and time-domain like FDD, pLSCF and SSI were applied. Extracted frequencies and mode shapes from the different identification methods showed a greater consistency for three buildings, however the three lower frequencies extracted were 1.2 to 1.7 times as stiff as those obtained using the initial FE models. Comparing the extracted fundamental periods with those estimated from the code equations and FE analysis, the FE analysis results showed the most flexible behavior, and the most simple equation that considers the building height as the only parameter correlated fairly well with test results. It is recognized that such a discrepancy arises from the fact that the present tests exclude the stiffness decreasing factors like concrete cracking, while the FE models ignore the stiffness increasing factors, such as the contribution of non-structural elements and the actual material properties used.

Design and Implementation of Microstrip Quadrature Coupler and High Power Transmitting/Receiving Switch Using Dynamic Loading Technique for 1-Tesal MRI System (동적 부하 기술을 이용한 1-Tesla 자기공명 영상 시스템용 마이크로 스트립 quadrature coupler 및 고출력 송수신 스위치의 설계 및 제작)

  • 류웅환;이미영;이흥규;이황수;김정호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.1-11
    • /
    • 1999
  • It is now common practice to utilize the quadrature RF coils to improve the signal-to-noise ratio (SNR) in the Magnetic Resonance Imaging (MRI) System. In addition, to make such an available SNR improvement, it is mandatory to use a well-designed quadrature coupler, which facilitates a perfect 3-dB coupling and quadrature-phase shift. However, the four ports matching condition has to be well considered during the RF excitation and the signal detection period. This work investigates the effects of such a mismatching condition (especially, due to patient) from the analysis, simulation, and real implementation and firstly proposes dynamic loading technique for a quadrature coupler and transmitting/receiving switch module to minimize a patient mismatching and enhance a system reliability. Also, we designed and implemented the quadrature coupler and transmitting/receiving switch module using microstrip. As a result, the SNR of our MRI system using the microstrip quadrature coupler and transmitting/receiving switch module with dynamic load increases 3 dB compared with the old one using USA quadrature switch. Also, the power capability of quadrature coupler and transmitting/receiving switch module is 5-kw peak power. Considering power loss and reduction of size, we used a RT/duroid 6010 substrate with high permittivity and for simulation we use Compact Software.

  • PDF

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.

The Effect of Internal Row on Marine Riser Dynamics (Riser의 내부유체 흐름이 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-90
    • /
    • 1995
  • A mathematical model for the dynamic analysis of a riser system with the inclusion of internal flow and nonlinear effects due to large structural displacements is developed to investigate the effect of internal flow on marine riser dynamics. The riser system accounts fir the nonlinear boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible or inextensible. tubular beam subject to nonlinear three dimensional hydrodynamic loads such as current or wave excitation. Galerkin's finite element approximation and time incremental operator are implemented to derive the matrix equation of equilibrium for the finite element system and the extensibility or inextensibility condition is used to reduce degree of freedom of the system and the required computational time in the case of a nonlinear model. The algorithm is implemented to develop computer programs used in several numerical applications. The investigations of the effect of infernal flow on riser vibration due to current or wave loading are performed according to the change of various parameters such as top tension, internal flow velocity, current velocity, wave period, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point particularly for the long riser under the harmonic loading such as waves. And it is also found that the consideration of nonlinear effects due to large structural displacements increases the effect of internal flow on riser dynamics.

  • PDF

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Vibration Characteristics of a Wire-Bonding Ultrasonic Horn (와이어 본딩용 초음파 혼의 진동 특성)

  • Kim, Young Woo;Yim, Vit;Han, Daewoong;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.227-233
    • /
    • 2014
  • This study investigates the vibration characteristics of a wire-bonding piezoelectric transducer and ultrasonic horn for high-speed and precise welding. A ring-type piezoelectric stack actuator is excited at 136 kHz to vibrate a conical-type horn and capillary system. The nodal lines and amplification ratio of the ultrasonic horn are obtained using a theoretical analysis and FEM simulation. The vibration modes and frequencies close to the driving frequency are identified to evaluate the bonding performance of the current wire-bonder system. The FEM and experimental results show that the current wire-bonder system uses the bending mode of 136 kHz as the principal motion for bonding and that the transverse vibration of the capillary causes the bonding failure. Because the major longitudinal mode exists at 119 kHz, it is recommended that the design of the current wire-bonding system be modified to use the major longitudinal mode at the excitation frequency and to minimize the transverse vibration of capillary in order to improve the bonding performance.

Variable Switching Duty Control of Switched Reluctance Motor using Low-Cost Analog Drive (저가형 아날로그 구동장치를 이용한 Switched Reluctance Motor의 스위칭 Duty 가변제어)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2021
  • For accurate speed and current control in industrial applications, SRM (Switched Reluctance Motor) is very important to synchronize the stator phase excitation and rotor position in the drive due to its nature. In general, position sensors such as encoder and resolver are used to generate rotational force by exciting the stator winding according to the rotor position and to control the motor by using speed and position information. However, for these sensors, 1) the cost of the sensors is quite large in terms of price, so the proportion of the motor system to the total system cost is high. 2) In terms of mechanical, position sensors such as encoders and resolvers are attached to the stator to increase the size and weight. In conclusion, in order to drive the SRM, control based on the rotor position information should be basically performed, and it is important to design the SRM driving system according to the environment in consideration of the application field. Therefore, in this paper, we intend to study the driving and control characteristics of SRM through variable switching duty control by designing a low-cost analog driving device, deviating from the general control system using the conventional encoder and resolver.

Optimal Design for Weight Reduction of Rotorcraft Shaft System (회전익기의 축계 경량화를 위한 최적설계)

  • Kim, Jaeseung;Moon, Sanggon;Han, Jeongwoo;Lee, Geun-Ho;Kim, Min-Geun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.243-248
    • /
    • 2022
  • Weight optimization was performed for a rotorcraft shaft system using one-dimensional Euler-Bernoulli beam elements. Torsion, shaft support stiffness such as bearings, flange mass are all considered. To guarantee structural dynamic stability, eigenvalue analysis was performed to avoid critical speed and tooth mesh excitation form the gearbox. The weight optimization was performed by adjusting the thickness and radius while the length of the shaft was fixed, and the optimization process was divided into two stages. In the first, the weight is optimized with the torsional strength constraint. In the second, the difference between the primary mode of shaft and the critical speed is maximized so that the primary mode of the shaft can avoid the critical speed while the constraint on the torsional strength of the shaft is satisfied according to the standard for shaft system stability (AMC P 706-201, 1974). The proposed method was verified by comparing the results of the optimal design using the given one-dimensional beam elements with the stress results of the 3D finite element and the actual manufactured shaft.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.

Speech Transition Detection and approximate-synthesis Method for Speech Signal Compression and Recovery (음성신호 압축 및 복원을 위한 음성 천이구간 검출과 근사합성 방식)

  • Lee, Kwang-Seok;Kim, Bong-Gi;Kang, Seong-Soo;Kim, Hyun-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.763-767
    • /
    • 2008
  • In a speech coding system using excitation source of voiced and unvoiced, it would be involved a distortion of speech qualify in case coexist with a voiced and an unvoiced consonants in a frame. So, We proposed TS(Transition Segment) including unvoiced consonant searching and extraction method in order to uncoexistent with a voiced and unvoiced consonants in a frame. This research present a new method of TS approximate-synthesis by using Least Mean Square and frequency band division. As a result, this method obtain a high quality approximation-synthesis waveforms within TS by using frequency information of 0.547kHz below and 2.813kHz above. The important thing is that the maximum error signal can be made with low distortion approximation-synthesis waveform within TS. This method has the capability of being applied to a new speech coding of Voiced/Silence/TS, speech analysis and speech synthesis.

  • PDF