• 제목/요약/키워드: Excitation energy transfer

검색결과 123건 처리시간 0.024초

Ba-Mg-Al-O:$Eu^2+$ 청색형광체의 발광특성 (The Luminescence Property of Ba-Mg-Al-O:$Eu^2+$ Blue Phosphors)

  • 김광복;천희곤;조동율;구경완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.157-161
    • /
    • 2000
  • Blue phosphor of Ba-Mg-Al-O:Eu$^{2+}$ phase was fabricated by conventional firing techniques under reducing atmosphere and its photoluminescence properties are studied with varying Eu concentration and phost-annealing temperature under air atmosphere. This phosphors were well crystallized with particle size in the range of 3~5um and emitted a blue light at a dominent wavelength 450nm for 254nm UV irradiation. The concentration quenching wit Eu$^{2+}$ was that with increasing Eu concentration the energy transfer between the activator ions steadily improves, so that the excitation energy is transported over larger distances through the lattice before luminescence can occur. Thermal quenching also occurred in this phosphor means that in a host lattice with the $\beta$-alumina structure the bond of an Eu$^{2+}$ ion with the nearest-neighbour oxygen ion is much stronger than in a lattice with the magnetoplumbite structure.cture.

  • PDF

Nanosecond Laser Flash Photolysis Study of 5-Styryl-1,3-dimethyluracil

  • 심상철;신은주;채규호
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권4호
    • /
    • pp.234-238
    • /
    • 1985
  • The photoisomerization of 5-styryl-1,3-dimethyluracil is studied with nanosecond laser flash photolysis technique at room temperature. The laser flash photolysis of E-isomer produces the transient absorption spectrum regarded as the triplet-triplet absorption, but the transient absorption of Z-isomer does not show the typical decay curve, probably due to the facile photocyclization reaction during the laser flash photolysis. Using the energy transfer method on nanosecond laser spectroscopy, the energy of the lowest triplet state for E isomer is estimated to lie between 41.8 and 47 kcal/mol. The triplet lifetime for E-isomer obtained from the decay curve of the transient absorption is ca. 93ns. The $S_1 → T_1$ intersystem crossing of E-isomer on direct excitation is relatively inefficient at room temperature supporting the singlet mechanism for direct photoisomerization.

Tb3+ 이온이 첨가된 NaCa(PO3)3 형광체의 형광특성 (Optical spectroscopy of Tb3+ ions doped NaCa(PO3)3 phosphors)

  • 윤창용
    • 한국방사선학회논문지
    • /
    • 제12권4호
    • /
    • pp.451-457
    • /
    • 2018
  • $Tb^{3+}$ 이온이 첨가 된 $NaCa(PO_3)_3$ 형광체의 여기 및 방출 스펙트럼 및 레이저 분광 측정을 통하여 형광특성을 조사 하였다. 고상법으로 $NaCa(PO_3)_3:Tb^{3+}$ 형광체를 합성하였다. X선 회절측정(XRD)을 사용하여 형광체의 결정 구조 및 결정성을 분석하여 $Tb^{3+}$ 이온이 30 mol%까지 첨가되어도 형광체의 결정구조가 $NaCa(PO_3)_3$의 결정상을 유지하였다. $NaCa(PO_3)_3:Tb^{3+}$(0.01 - 30mol %)형광체의 여기 및 방출 스펙트럼과 형광의 감쇠곡선을 상온에서 측정 하였다. $NaCa(PO_3)_3:Tb^{3+}$의 여기 스펙트럼에서 205 ~ 245 nm 영역에서 넓은 $Tb^{3+}$의 4f - 5d 전이에 의한 f - d 밴드가 나타났다. $NaCa(PO_3)_3:Tb^{3+}$의 방출 스펙트럼에서 $^5D_4{\rightarrow}^7F_J$ 전이에 의한 강한 피크와 $^5D_3{\rightarrow}^7F_J$ 전이에 약한 피크가 관찰 되었다. 방출 스펙트럼의 형광 강도와 형광의 수명시간 분석을 통하여 $Tb^{3+}$ 이온 사이의 에너지 전이 및 교차 이완이 확인되었다.

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

Vibrational Relaxation and Fragmentation in Icosahedral (Ar2+)Ar12 Clusters

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2774-2780
    • /
    • 2014
  • A dynamics study of relaxation and fragmentation of icosahedral argon cluster with a vibrationally excited $Ar_2^+$ (${\nu}$) is presented. Local translation is shown to be responsible for inducing energy flow from the embedded ion to host atoms and fragmentation of the cluster consisting of various low frequency modes. The total potential energy of $(Ar_2^+)Ar_{12}$ is formulated using a building-up procedure of host-guest and host-host interactions. The time dependence of ion-to-host energy transfer is found to be tri-exponential, with the short-time process of ~100 ps contributing most to the overall relaxation process. Relaxation timescales are weakly dependent on both temperature (50-300 K) and initial vibrational excitation (${\nu}$ = 1-4). Nearly 27% of host atoms in the cluster with $Ar_2^+$ (${\nu}$ = 1) fragment immediately after energy flow, the extent increasing to ~43% for ${\nu}$ = 4. The distribution of fragmentation products of $(Ar_2^+)Ar_{12}{\rightarrow}(Ar_2^+)Ar_n+(12-n)Ar$ are peaked around $(Ar_2^+)Ar_8$. The distribution of dissociation times reveals fragmentation from one hemisphere dominates that from the other. This effect is attributed to the initial fragmentation causing a sequential perturbation of adjacent atoms on the same icosahedral five-atom layer.

파수영역매칭을 통한 링 형상의 음향집적공간 형성 (Ring-shaped Sound Focusing using Wavenumber Domain Matching)

  • 박진영;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.506-509
    • /
    • 2006
  • Shaped Sound Focusing is defined as the generation of acoustically bright shape in space using multiple sources. The acoustically bright shape is a spatially focused region with relatively high acoustic potential energy level. In view of the energy transfer, acoustical focusing is essential because acoustic energy is very small to use other type of energy. Practically, focused sound shape control not a point is meaningful because there are so many needs to enlarge the focal region especially in clinical uses and others. If focused sound shape can be controlled, it offers various kinds of solutions for clinical uses and others because a regional focusing is essentially needed to reduce a treatment time and enhance the performance of transducers. For making the shaped-sound field, control variables, such as a number of sources, excitation frequency, source positioning, etc., should be taken according to geometrical sound shape. To verify these relations between them, wavenumber domain matching method is suggested because wavenumber spectrum can provide the information of control variables of sources. In this paper, the procedures of shaped sound focusing using wavenumber domain matching and relations between control variables and geometrical sound shape are covered in case of an acoustical ring.

  • PDF

$CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구 (Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar)

  • 김상남
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

현실감있는 입체음향 생성을 위한 머리전달함수의 개선 (Improvement of Head Related Transfer Function to Create Realistic 3D Sound)

  • 구교식;차형태
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.381-386
    • /
    • 2008
  • 최근 게임, 멀티미디어 콘텐츠, 가상현실 등을 제공하는 멀티미디어 장치에서 2개의 스피커나 헤드폰을 이용하여 3차원 입체 음향효과를 내고자 하는 가상 입체음향 기법에 관한 연구가 많이 이루어지고 있다. 가상 입체음향 기법 중 가장 대표적인 것으로는 소리가 음원으로부터 청자의 두 귀에 이르는 정보를 포함하고 있는 머리전달함수를 사용하는 방법이 있다. 그러나 이 방법은 혼돈원추 상에서 음상정위의 혼돈을 주게 됨으로서 입체감이 저하된다는 단점이 있다. 본 논문에서는 인간의 청각특성에 따른 여기에너지를 이용하여 현실감있는 입체음향을 생성하는 알고리즘을 제안하고자 한다. 서로 대칭되는 각 머리전달함수의 여기에너지를 계산하고 각 bark 대역에 따른 비율을 추출한 후 앞방향에 해당하는 머리전달함수의 저주파 영역을 보상해줌으로서 스펙트럼 특성을 부각시키는 새로운 방법을 제안하였으며 청감테스트를 통하여 제안한 방식이 기존의 방법보다 방향감을 개선시킴을 확인할 수 있었다.

Ba2Mg(PO4)2:Eu 형광체의 합성과 자외선 여기하의 발광특성 (Preparation of Ba2Mg(PO4)2:Eu Phosphors and Their Photoluminescence Properties Under UV Excitation)

  • 태세원;정하균;최성호;허남회
    • 한국재료학회지
    • /
    • 제18권11호
    • /
    • pp.623-627
    • /
    • 2008
  • For possible applications as luminescent materials for white-light emission using UV-LEDs, $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphors were prepared by a solid state reaction. The photoluminescence properties of the phosphor were investigated under ultraviolet ray (UV) excitation. The prepared phosphor powders were characterized to from a single phase of a monoclinic crystalline structure by a powder X-ray diffraction analysis. In the photoluminescence spectra, the $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphor showed an intense emission band centered at the 584 nm wavelength due to the f-d transition of the $Eu^{2+}$ activator. The optimum concentration of $Eu^{2+}$ activator in the $Ba_2Mg(PO_4)_2$ host, indicating the maximum emission intensity under the excitation of a 395 nm wavelength, was 5 at%. In addition, it was confirmed that the $Eu^{2+}$ ions are substituted at both $Ba^{2+}$ sites in the $Ba_2Mg(PO_4)_2$ crystal. On the other hand, the critical distance of energy transfer between $Eu^{2+}$ ions in the $Ba_2Mg(PO_4)_2$ host was evaluated to be approximately 19.3 A. With increasing temperature, the emission intensity of the $Ba_2Mg(PO_4)_2$:Eu phosphor was considerably decreased and the central wavelength of the emission peak was shifted toward a short wavelength.

CF4, CH4, Ar 혼합기체의 전리와 부착계수 (Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas)

  • 김상남
    • 전기학회논문지P
    • /
    • 제61권1호
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.