• Title/Summary/Keyword: Excitation energy transfer

Search Result 123, Processing Time 0.038 seconds

Effect of ZnS:Mn, Dy Yellow Phosphor on White LEDs Characteristics (백색 LED의 특성에 대한 ZnS:Mn, Dy 황색 형광체의 영향)

  • Shin, Deuck-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.295-298
    • /
    • 2011
  • ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction method using ZnS, $MnSO_4{\cdot}5H_2O$, S and $DyCl_3{\cdot}6H_2O$ powders as starting materials. The mixed powder was sintered at $1000^{\circ}C$ for 4 h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn, Dy phosphors was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450 nm excitation was observed at 4 mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energy transfer from $Dy^{3+}$ to $Mn^{2+}$. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X = 0.5221, Y = 0.4763. The optimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy : yellow phosphor = 1:2 form CIE coordinate.

A Self-Excited Induction Generator with Simple Voltage Regulation Suitable for Wind Energy

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.205-216
    • /
    • 2004
  • In this paper, a three-phase induction machine-based wind power generation scheme is proposed. This scheme uses a low-cost diode bridge rectifier circuit connected to an induction machine via an ac load voltage regulator (AC-LVR) to regulate dc power transfer. The AC-LVR is used to regulate the DC load voltage of the diode bridge rectifier circuit which is connected to the three-phase self-excited induction generator (SEIG). The excitation of the three-phase SEIG is supplied by the static VAR compensator (SVC). This simple method for obtaining a full variable-speed wind turbine system by applying a back-to-back power converter to a wound rotor induction generator is useful for wind power generation at widely varying speeds. The dynamic performance responses and the experimental results of connecting a 5kW 220V three-phase SEIG directly to a diode bridge rectifier are presented for various loads. Moreover, the steady-state simulated and experimental results of the PI closed-loop feedback voltage regulation scheme prove the practical effectiveness of these simple methods for use with a wind turbine system.

The analysis of electron transport coefficients in CF$_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 CF$_4$분자가스의 전자수송계수 해석)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure CF$_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method, we confirmed erroneous calculated results of transport coefficients for CF$_4$ molecule treated in this paper having 'C2v symmetry'as C$_3$H$_{8}$ and C$_3$F$_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and ND$_{L}$) in pure CF$_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.e.

  • PDF

Tuning of Electro-optical Properties of Nano-structured SnO2:Ga Powders in a Micro Drop Fluidized Reactor

  • Lim, Dae Ho;Yang, Si Woo;Yoo, Dong June;Lee, Chan Gi;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.259-266
    • /
    • 2019
  • Tuning of electro-optical properties of nano-structured $SnO_2:Ga$ powders in a micro drop fluidized reactor (MDFR) was highly effective to enhance the activities of powders to be used as sensor materials. The tuning was conducted continuously in a facile one-step process during the formation of powders. The microscopic hydrodynamic forces affected the band gap structure and charge transfer of $SnO_2:Ga$ powders through the oxygen and interfacial tin vacancies by providing plausible pyro-hydraulic conditions, which resulted in the decrease in the electrical resistance of the materials. The analyses of room-temperature photoluminescence (PL) spectra and FT-IR exhibited that the tuning could improve the surface activities of $SnO_2:Ga$ powders by adjusting the excitation as well as separation of electrons and holes, thus maximizing the oxygen vacancies at the surface of the powders. The scheme of photocatalytic mechanism of $SnO_2:Ga$ powders was also discussed.

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

Luminescence Properties of Europium-doped NaSr(PO3)3 Phosphor (Europium이 첨가된 NaSr(PO3)3형광체의 형광특성)

  • Yoon, Changyong;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.645-652
    • /
    • 2019
  • Phosphor with phosphorus doped with rare earth ions was investigated by searching Sr and Eu phosphors suitable for substitution of Eu ions with similar ionic radius to polyphosphate host. The $NaSr(PO_3)_3$ phosphor was synthesized by the solid state method and the $NaSr(PO_3)_3:Eu^{2+}$ phosphor was prepared by the carbon thermal reduction method. Both of the phosphors were identified by X - ray diffraction. The excitation and emission spectra of $NaSr(PO_3)_3:Eu^{3+}$ increased fluorescence intensity and intensity quenching with increasing $Eu^{3+}$ concentration. The higher the $Eu^{3+}$ concentration in the emission spectrum, the higher the local symmetry of $Eu^{3+}$ environment. The mechanism of concentration quenching, in which fluorescence decreases due to the energy transfer between $Eu^{2+}$ ions with the closest critical distance between $Eu^{2+}$ ions with increasing $Eu^{2+}$ ion concentration, was confirmed in the emission spectrum of $NaSr(PO_3)_3:Eu^{2+}$ concentration. It is possible to change the fluorescent region through the post-processing of single rare earth ion added phosphors, and it is possible to change the fluorescence by applying the energy transfer and concentration quenching mechanism according to the local symmetry of $Eu^{3+}$ will be used for high phosphor development.

Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses ($Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상)

  • Choi, yong-Gyu;Kim, Kyong-Hon;Heo, Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 1998
  • Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

  • PDF

Near-Infrared and Blue Emissions of LuNbO4:Yb3+, Tm3+ Phosphors (LuNbO4:Yb3+, Tm3+ 형광체의 근적외선 및 청색 발광 특성)

  • Im, Min Hyuk;Kim, Young Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.355-360
    • /
    • 2018
  • $LuNbO_4:0.2Yb^{3+},xTm^{3+}$ powders were prepared using a solid-state reaction process. The effects of the amount of Tm on up-conversion(UC) and down-conversion(DC) luminescence properties are investigated. X-ray diffraction patterns confirm that $Yb^{3+}$ and $Tm^{3+}$ ions are successfully incorporated into Lu sites. Under 980 nm excitation, the UC spectra of the powders predominantly exhibit strong near-infrared emission bands that peak at 805 nm, whereas weak 480 nm emission bands are observed as well. The emission bands are assigned to the $^1G_4{\rightarrow}^3H_6$ (480 nm) and 3 $^3H_4{\rightarrow}^3H_6$ (805 nm) transitions of the $Tm^{3+}$ ions via an energy transfer from $Yb^{3+}$ to $Tm^{3+}$; two- and three-photon UC processes are responsible for the 805 and 480 nm emissions, respectively. The DC emission spectra exhibit blue emission ($^1D_2{\rightarrow}^3F_4$) of $Tm^{3+}$ at 458 nm. The amount of Tm affects the emission intensity with the strongest emissions at x = 0.007 and 0.02 for the UC and DC luminescence, respectively. The results demonstrate that $LuNbO_4:Yb^{3+},Tm^{3+}$ phosphors are suitable for bio-applications.

X-ray Crystal Structure and Luminescence Properties of Pd(II) and Pt(II) Complexes with Dithiopyrrole

  • Kang, Jun-Gill;Cho, Dong-Hee;Park, Changmoon;Kang, Sung Kwon;Kim, In Tae;Lee, Sang-Woo;Lee, Ha-Hyeong;Lee, Young-Nam;Lim, Dae-Won;Lee, Sung-Jae;Kim, Sung-Ho;Bae, Young-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.599-603
    • /
    • 2008
  • The complexes Pd(nbmtp)Cl2 and Pt(nbmtp)Cl2 (nbmptp = 1-nonyl-3,4-bis(methylthio)pyrrole) were prepared and their x-ray structures were determined at room temperature. The four-coordinated metal unit and the pyrrole ring formed a nearly planar geometry. The free ligand dissolved in CH2Cl2 produced two luminescence bands associated with the lone-pair electron of S (l max = 525 nm) and the pyrrole p electron (l max = 388 nm). When the two complexes were dissolved in CH2Cl2, these two luminescence bands were also observed, although the low-energy band was blueshifted. For the crystalline Pt(II) complex, only the strong charge transfer band (l max = 618 nm) from the d* orbital of Pt resulted from excitation of the lone-pair electron of S.

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF