• Title/Summary/Keyword: Excitation Point

Search Result 238, Processing Time 0.031 seconds

The First and Second Kinds of Total Impedances (제 1 종 및 제 2 종 평균 임피던스)

  • Kim, Sea-Moon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.351-356
    • /
    • 2000
  • Impedance is an inherent property that represents the relation between the excitation and motion of a system. It is not only gives the frequency characteristics of the system but also help us to understand an interaction with the other systems. If the impedance to be described is not with respect to a point but to a certain area, modal impedance must be used. However, it is highly dependent on modal functions and it is needed to know all information on the modal impedance to understand the whole characteristics. In this paper, two new types of impedances are introduced: the first and second kinds of total impedances. Their definitions certainly convey the implication that their properties are similar to the conventional impedance. With some limit checks and the simulations of several simple systems, we found that they are useful to describe the frequency characteristics of systems.

  • PDF

Complex Modal Testing for Rotating Disks with Support Motion (지지부의 운동을 가진 회전원판의 복소모드시험)

  • Ham, Jong-Seok;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1513-1520
    • /
    • 2000
  • Complex modal testing method for rotating disks with support motion is introduced which handles the pairs of two point excitation and responses of the disk as complex input and output, respectively. This method utilizes the directivity information and the separation over the rotational speed of forward and backward traveling wave modes or bending coupled modes in the directional frequency response functions(dFRFs). This method synthesizes the normal/reverse dFRFs and complex wave dFRF, which were originally applied to rotating shaft and rotating disk, respectively, and is applied to complex system with dynamically coupled rotating disks and shaft. Experiments with a commercial hard disk drive spindle system demonstrate the validity of this method.

  • PDF

Sound Radiation Characteristics of Rectangular Plates with a Guided Edge Condition (모서리의 경계조건이 가이드 조건인 사각 평판의 음향방사 특성 연구)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.876-883
    • /
    • 2009
  • The radiation of sound from a rectangular plate with a guided edge condition is investigated. By taking this particular boundary condition into account, simple analytical forms of the average radiation efficiency and radiation power based on the modal approach can be found, where the cross-modal terms can average out for all possible point excitation locations. Design variables of the plate such as thickness, aspect ratio, and damping that are closely related to the sound radiation are mainly discussed. The radiation power of the guided plate is found to be governed by the piston mode as well as the critical frequency. While both the radiation efficiency and the radiation power seem to be influenced by thickness and a large aspect ratio, damping loss factor seems less important to the radiation power. It is also shown that no clear corner and edge mode regions may be found for the guided case, unlike the pinned.

Microwave plasma emission from tunnel-injected nonequilibrium high-Tc superconductors

  • Lee, Kie-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.9-14
    • /
    • 2000
  • We report on the novel nonequilibrium nlicrowave emission from quasiparticle-injected high-Tc superconductors. The phenomena have been observed for the current-injected YBCO/I/Au or BSCCO/I/Au thin-film tunnel junctions and BSCCO single-crystal intrinsic Josephson mesa junction samples. For the thin-film tunnel junctions, the emitted radiation appears as broadband. For the intrinsic BSCCO mesa samples, the radiation appears as three different modes of emissions depending on the bias point in the hysteretic current-voltage characteristics; Josephson-emission, nonequilibrium broad emission and sharp coherent microwave emission. The results were interpreted by the Josephson plasma excitation model due to quasiparticle injection.

  • PDF

Automatic reentry of deepsea riser by adaptive control (적응제어에 의한 대수심 라이저의 리엔트리)

  • 남동호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.108-118
    • /
    • 1996
  • This paper presents automatic reentry of a deepsea reser by adaptive control. Reentry is one of the major pro blems regarding a deepsea riser. In the reentry operation, the lower end of riser must be accurately positioned over the tarket point on the seabed. But the deepsea riser shows complex elastic response due to flexibility and nonlinearity of the riser dynamics and the required positioning accuracy is high. Moreover, elastic deformation must by controlled for securing structural integrity. In adaptive control, uncertainly known parameters like added mass and drag coefficient in the riser dynamics are identified and control forces at the floating body and the riser are calculated simultaneously. An Adaptive algorithm for MIMO linear discrete time system without requiring a persistent excitation is adopted in this study. The effectiveness of adaptive control logic is tested by numerical simulation and model experiment. The designed control system shows good overall performances, so that the present study can be applied to the control of the deepsea riser.

  • PDF

A Frequency Response Function-Based Damage Identification Method for Cylindrical Shell Structures

  • Lee, U-Sik;Jeong, Won-Hee;Cho, Joo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2114-2124
    • /
    • 2004
  • In this paper, a structural damage identification method (SDIM) is developed for cylindrical shells and the numerically simulated damage identification tests are conducted to study the feasibility of the proposed SDIM. The SDIM is derived from the frequency response function solved from the structural dynamic equations of damaged cylindrical shells. A damage distribution function is used to represent the distribution and magnitudes of the local damages within a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in the damaged state. By virtue of utilizing FRF-data, one is able to make the inverse problem of damage identification well-posed by choosing as many sets of excitation frequency and FRF measurement point as needed to obtain a sufficient number of equations.

Mathematical Model Development of Whole-body Vertical Vibration, Using a Simulated Annealing Method (Simulated Annealing 기법을 이용한 인체 수직 전신 진동 모델의 파라미터 선정)

  • Choi, Jun-Hee;Kim, Young-Eun;Baek, Kwang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.381-386
    • /
    • 2000
  • Simple spring-damper-mass models have been widely used to understand whole-body vertical biodynamic response characteristics of the seated vehicle driver. However, most previous models have not considered about the non-rigid masses(wobbling masses). A simple mechanical model of seated human body developed in this study included the torso represented by a rigid and a wobbling mass. Within the 0.5-20Hz frequency range and for excitation amplitudes maintained below $5ms^{-2}$, this 4-degree-of-freedom driver model is proposed to satisfy the measured vertical vibration response characteristics defined from a synthesis of published data for subjects seated erect without backrest support. The parameters are identified by using the combinatorial optimization technique, simulated annealing method. The model response was found to be provided a closer agreement with the response characteristics than previously published models.

  • PDF

A Study on Vibration Intensity of Laminated Composite Plate (복합적층판의 진동인텐시티에 관한 연구)

  • Seo, Jin;Kim, Dong-Young;Hong, Do-Kwan;Choi, Seok-Chang;An, Chan-Woo;Han, Geun-Jo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.892-895
    • /
    • 2002
  • In this study, to grasp the effect of vibration intensity fur the laminated composite plate, the two-dimension plate was shaken by a harmonic point excitation with the natural frequency using the finite element method. As the result, it shows that the vibration intensity according to the change of angle-ply is various and it flows to the direction of length rather than width in the plate. Also this paper represents those results to the vector flow.

  • PDF

A Study on Vibration Power Flow of 2-Dimension Structure Travelling from the Source (진동원으로부터 전달되는 2차원 구조물의 진동파워흐름에 관한 연구)

  • 노영희;김동영;홍도관;권용수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.879-882
    • /
    • 2002
  • To control the vibration and sound of structure, it is important to analyze the dynamic action of structure. And through those analysis, the vibration source and the flow path is understood. To grasp that, when the two-dimension plate structure is shaken by a harmonic point excitation with the natural frequency using the finite element method, this paper presents the relation between vibration power flow and mode shape. As those results present to vector flow, the vibration power flow is visualized.

  • PDF

A Coupled Vibration Analysis of Railway Track System with Consideration of Contact Stiffness (접촉강성을 고려한 차량-레일계의 연성진동해석)

  • 류윤선;조희복;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.241-246
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF