• Title/Summary/Keyword: Excitation Point

Search Result 238, Processing Time 0.026 seconds

Influence of Chucking Conditions on the Chatter Vibration Commencing Point in Turning (선삭에서 공작물 지지조건이 채터진동발생에 미치는 영향)

  • 신승춘
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.89-94
    • /
    • 1998
  • With increasing demands on automatic and high-capability manufacturing, the dynamic performance of machine tools becomes more and more important. In this paper, the correlation between dynamic compliance of the cutting system and the commencing point of chatter vibration in turning is checked by impulse excitation method and cutting tests for some cutting system. The correlation between chucking conditions of workpiece and the commencing point of chatter vibration is clarified, and it is proven that there is a mutual relations between them. Chatter vibration commenced at certain level of dynamic compliance of the cutting system regardless of the kind of the system. It shows the possibility of dynamic performance test of a lathe by means of impulse excitation method.

  • PDF

A Study on Structural Intensity Measurement of 2-dimensional Structure (2차원 구조물의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.477-488
    • /
    • 1997
  • In order to control vibration in structures, it is desirable to be able to identify dominant paths of vibration transmission from sources through the structure to some points of interest. Structural intensity vector(power flow per width of cross section) using cross spectra is able to measure the vibration power flow at a point in a structure. This paper describes the structural intensity measurement of 2-dimensional structure. Structural intensity of 2-dimensional structure can be obtained from eight point cross spectral measurement per axis, or two point measurement per axis on the assumption of far field. Approximate formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained on an infinite plate at the near and far field in flexural vibration. The measurement error of two point measurement is rather bigger than eight point measurement on account of the assumption that Poisson's ratio is 1. The structural intensity vectors on the plate are checked the ability to identify the path of vibration power flow in random excitation and 200Hz sine excitation, the result of two point measurememt is almost the same as the result of eight point measurement in 200Hz sine excitation.

  • PDF

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

Determination of Excitation and Response Measurement Points for an Efficient Modal Testing (효율적 모우드시험을 위한 가진점과 응답측정점의 결정)

  • 박종필;김광준;박영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1643-1653
    • /
    • 1992
  • A method, which uses analytical or numerical modal analysis results, e.g. from finite element analysis, to select desirable response measurement and excitation points for an efficient modal testing is introduced. First, points of master degree of freedom(DOP) are determined so as to statistically minimize errors between responses of a full order model and those estimated from the reduced order model. Such master DOF's are selected as the response measurement points. Then a criterion named 'driving point model constant(DPMC)' related to the magnitudes of resonance peaks of the driving point freqency response functions used to select the point of excitation out of the master DOF's. In this work, the method is demonstrated through applications to modal testing on a one dimensional cantilever beam and an aluminum plate and the results are compared with those by another technique. also, the method is applied to a two dimensional structural component of a passenger car.

A Measurement of Size of the Open Crack using Ultrasound Thermography (초음파 서모그라피를 이용한 개방 균열의 크기 측정)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.218-223
    • /
    • 2007
  • The dissipation of high-power ultrasonic energy at the faces of the defect causes an increase in temperature. It is resulted from localized selective heating in the vicinity of cracks because of the friction effect. In this paper the measurement of size and direction of crack using UET(Ultrasound Excitation Thermography) is described. The ultrasonic pulse energy is injected into the sample in one side. The hot spot, which is a small area around the crack tip and heated up highly, is observed. The hot spot, which is estimated as the starting point of the crack, is seen in the nearest position from the ultrasonic excitation point. Another ultrasonic pulse energy is injected into the sample in the opposite side. The hot spot, the ending point of the crack, is seen in the closest distance from the injection point also. From the calculation of the coordinates of both the first hot spot and the second hot spot observed, the size and slope of the crack is estimated. In the experiment of STS fatigue crack specimen(thickness 14mm), the size and the direction of the crack was measured.

An Experimental Study on the Flame Appearance and Heat Transfer Characteristics of Acoustically Excited Impinging Inverse Diffusion Flames (음향 가진된 충돌 역 확산화염의 화염형상과 열전달 특성에 관한 실험적 연구)

  • Kang, Ki-Joong;Lee, Kee-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3647-3653
    • /
    • 2010
  • An experimental investigation of the flame appearance and heat transfer characteristics in both unexcited and excited impinging inverse diffusion flames with a loud speaker has been performed. The flame is found to become broader and shorter (in length) with acoustic excitation. The heat flux at the stagnation point is increased with the acoustic excitation. The acoustic excitation is more effective in lean conditions than in rich conditions. The reasons for these behaviors are that acoustic excitation improves the entrainment of surrounding air into the jet. From this study, it is found that the maximum increase of 57% in the total heat flux is obtained at the stagnation point of $\Phi$=0.8. Therefore, it is ascertained that the excitation combustion can be adopted with effective instruments as a method for improving heat transfer in impinging jet flames.

The Effect of Random Point Excitation on the Vibration Level of Plates

  • Park, Myung-Jin;Yoo, Song-Min;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.583-590
    • /
    • 2002
  • When a mechanical structure is driven by stationary wide band random point forces, the resulting vibration depends upon the number, location, and joint statistical properties of the exciting forces. In this study, under the assumption of light damping, an approximate procedure for analyzing plates is briefly outlined. The effects of number, location and correlation of the force field on the vibration level are then investigated for various cases in which random point forces with band limited white noise are applied, and the optimal spacing between input forces that produces a relative minimum in the vibration response is predicted.

Study on the Capacitor-self-excited Three-phase Synchronous Generator (A 캐패시터 자력식 삼상동기발전기에 관한 연구)

  • 정연택;김영동
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.11
    • /
    • pp.425-432
    • /
    • 1984
  • This paper is to propse a new self-excitation method of synchronous generator. Instead of conventional exciter of synchronous generator, the additional winding which is arranged in addition to the armature winding, is used in this generator. The output terminal of the additional winding is connected to a capacitor and to a full wave rectifier in series. In this configuration, one source double excitation which is composed of capacitor-self-excitation by lead urrent and direct current excitation by rectifier, is induced. The result is that` The excetation efficency is improved greatly and output waveform is improved also. In three-phase synchronous generator using the new method of the one source double excitation, voltage element (shunt characteristics) and current element (series characteristics)are compounded in scalar by adapting star-point-open-rectifier system. The result is as following` The effect of load power factor angle on voltage regulation is reduced greatly, compound characteristics is become manifold by controlling capacity of capacitor, and transient response is improved.

  • PDF

Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries

  • Cho, Dae Seung;Kim, Byung Hee;Kim, Jin-Hyeong;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.117-126
    • /
    • 2016
  • In this paper, a numerical procedure for the natural vibration analysis of plates with openings and carlings based on the assumed mode method is extended to assess their forced response. Firstly, natural response of plates with openings and carlings is calculated from the eigenvalue equation derived by using Lagrange's equation of motion. Secondly, the mode superposition method is applied to determine frequency response. Mindlin theory is adopted for plate modelling and the effect of openings is taken into account by subtracting their potential and kinetic energies from the corresponding plate energies. Natural and frequency response of plates with openings and carlings subjected to point excitation force and enforced acceleration at boundaries, respectively, is analysed by using developed in-house code. For the validation of the developed method and the code, extensive numerical results, related to plates with different opening shape, carlings and boundary conditions, are compared with numerical data from the relevant literature and with finite element solutions obtained by general finite element tool.

A Study on Structural Intensity Measurement of Semi-infinite Beam (반무한보의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 1997
  • This paper investigated the practical use for measuring the structural intensity (power flow per width of cross section) in a uniform semi-infinite beam in flexural vibration. The structural intensity is obtained as a vector at a measurement point, One-dimensional structural intensity can be obtained from 4-point cross spectral measurement, or 2-point measurement on the assumption of far field. The measurement errors due to finite difference approximation and phase mismatch of accelerometers are examined. For precise measurements, it would be better to make the value of k$\delta$(wave number x space between accelerometers) between 0.5 and 1.0. Formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained from 2- and 4-point measurement performed at 200mm (near field) and 400mm (far field) apart from excitation point in random excitation. the results are compared with the theoretical values and measured values of input power spectrum in order to verify the accuracy of structural intensity method, 2-point method is suggested as the practical structural intensity method.

  • PDF