• 제목/요약/키워드: Excitation Light

검색결과 290건 처리시간 0.021초

광역학적 암진단을 위한 여기 광원장치의 개발 (Development of Excitation Light Source for Photodynamic Diagnosis of Cancer)

  • 임현수
    • 전자공학회논문지SC
    • /
    • 제44권6호
    • /
    • pp.49-56
    • /
    • 2007
  • 본 논문은 광역학적 암 진단에서 여기광원(excitation light)으로 사용되는 광원장치의 개발에 관한 연구이다. 여기광원의 파장 대 선택은 광과민제의 선택에 따라 형광발생과 상관관계를 가지게 된다. 따라서 본 연구에서는 다양한 광 과민제(photosensitizer)를 이용한 광역학적 암 진단이 가능하도록, 여러 파장 대 광(multi-wavelength)의 선택과 안정적으로 출력할 수 있는 광원장치를 설계하고 개발하였다. 개발된 광원장치는 제논램프(Xenon lamp)를 이용 하였으며, iris를 통한 광 출력제어와 여러 가지 파장대의 필터로 구성된 필터 휠(filter wheel)을 고안하고, 파장 대는 380-420nm 430-480nm, 480-560nm의 파장 대를 출력할 수 있도록 제작하였으며, 광 전달 효율을 높일 수 있도록 광원 전송부도 고안하였다. 개발된 광원장치는 한국식약청의 허가 기준에 맞추어 성능을 평가하였으며, 광 출력과 파장대의 특성을 조사하고 안정성을 검증하였다.

복합 광원을 갖는 형광 내시경 개발 (Development of the Fluorescence Endoscope System with Dual Light Source Apparatus)

  • 배수진;강욱
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.222-226
    • /
    • 2007
  • We suggest the fluorescence endoscope system that has light source apparatus providing selectable white or excitation light. White light source generates normal color images and is easily switched over to excitation light with the wide spectrum range from 380 nm to 580 nm. 5-ALA is deposited selectively in the abnormal tissue like cancer and causes fluorescence in the red spectrum range when excited by blue spectrum range. In addition, the others of excitation light make the color background image by reflected light to allow accurate orientation and visualization of the abnormal tissue and around. According to clinical studies, the fluorescence intensity contrast that defines the fluorescence intensity of lesion over the fluorescence intensity of around has more than 2 in tumour. Proposed system is useful and objective way in early diagnosis. Furthermore, it can be used in the biopsy for tumour classification at the highest fluorescence intensity point.

벤젠제거에 대한 광촉매 효율의 여기광원 의존성 (Excitation Light Source Dependence of Photo-catalytic Efficiency for Benzene Removal)

  • 최용석;김성진;한영헌;유순재;이은아;김학수;김송강
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.510-514
    • /
    • 2005
  • We have investigated the excitation-light source dependence of photo-catalytic efficiency for the benzene removal. The photo-catalytic module for the benzene removal is fabricated by a combination of GaN-based ultraviolet light-emitting diode (UV GaN-LED) and $TiO_2$ thin film coated on an aluminum plate. The benzene reduction rates of 365 nm and 375 nm modules at 60 mA junction current are approximately $8.95\;\%/Hr$ and $9.2\;\%/Hr$, respectively, which indicates that 365 nm GaN-LED is more effective than 375 nm GaN-LED. The benzene reduction efficiency is also noticeably dependent on the excitation wavelength and excitation-light power, as well as it is increased with the shorter wavelength and higher excitation power. This result exhibits that UV GaN-LED is useful to remove the volatile organic compounds (VOCs) existing in the environment.

Miniaturized Fluorometer Based on Total Internal Reflector and Condensing Mirror

  • Jang, Dae-Ho;Yoo, Jae-Chern
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.81-85
    • /
    • 2013
  • A miniaturized fluorescence detection system based on total internal reflection (TIR) configuration, which is applicable to detecting the presence of biological materials labeled with fluorescence dye in micro total analysis systems (${\mu}TAS$), is proposed. In conventional fluorescence testing and analysis devices, interference between the excitation light beam and the emitted light from dyes is unavoidable. This paper presents a fluorescence detection system based on TIR configuration that allows the excitation light beam and the emitted light to be spatially perpendicular to each other so as to minimize the interference where fluorescence emission is detected at the orthogonal angle to the excitation beam. We achieved the limit of detection of about 5 nmol/L with a high linearity of 0.994 over a wide range of 6-FAM mol concentration, being comparable to that in earlier studies.

Study on the Excited Energy Transfer in Light-harvesting Complex (LH2) of Rhodobacter sphaeroides

  • Liu, Yuan;Guo, Lijun;Qian, Shixiong;Xu, Chunhe
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.359-361
    • /
    • 2002
  • A green mutant of Rhodobacter sphaeroides 60I was acquired by chemical induction. The blue-shifted of the carotenoid absorption was found in the Light-harvesting complex II (LH2) of the mutant. With the excitation at different wavelength, we observed that the evolution of excited-state dynamics in LH2 of Rhodobacter sphaeroides 60I. The dynamical traces demonstrate a dominant absorption followed concomitantly by an ultrafast transmission increase and decay with 818nm excitation.

  • PDF

Photoinhibition Induced Alterations in Energy Transfer Process in Phycobilisomes of PS II in the Cyanobacterium, Spirulina platensis

  • Kumar, Duvvuri Prasanna;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.644-648
    • /
    • 2007
  • Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 ${\mu}mol$ photons $m^{-2}s^{-1}$) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 ${\mu}mol$ photons $m^{-2}s^{-1}$) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 ${\mu}mol$ photons $m^{-2}s^{-1}$ caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.

Excitation Energy Migration in Multiporphyrin Arrays

  • Hwang, In-Wook;Aratani, Naoki;Osuka, Atsuhiro;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.19-31
    • /
    • 2005
  • During the last decade, the exploration of nanoscale device and circuitry based on molecules has gained increasing interest. In parallel with this, considerable effort is being devoted to the development of molecular photonic/electronic materials based on various porphyrin arrays. This involves light as an input/output signal and excitation energy migration as a mechanism for signal transmission. Absorption of a photon at the light collector end of the porphyrin array yields the excited state, which migrates among the intervening pigments until reaching the emitter, whereupon another photon is emitted. As a consequence, it is relevant to understand the excitation energy transfer (EET) processes occurring in various forms of porphyrin arrays for the applications as artificial light harvesting arrays and molecular photonic/electronic wires. Since the excitonic (dipole) and electronic (conjugation) couplings between the adjacent porphyrin moieties in porphyrin arrays govern the EET processes, we have characterized the EET rates of various forms of multiporphyrin arrays (linear, cyclic, and box) based on various time-resolved spectroscopic measurements. We believe that our observations provide a platform for further development of molecular photonic/electronic materials based on porphyrin arrays.

광역학적 암진단을 위한 광원장치의 설계 및 평가 (Design and evaluation of light source for photodynamic diagnosis of cancer)

  • 임현수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.73-76
    • /
    • 2007
  • Photodynamic diagnosis(PDD) is a method to diagnose the possibility of cancer, both by the principle that if a photosensitizer is injected into an organic tissue, it is accumulated in the tissue of a malignant tumor selectively after a specific period, and by a comparison of the intensity of the fluorescence of normal tissue with abnormal tissue after investigating the excitation light of a tissue with accumulated photosensitizer. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosencitizer, it plays an important role in POD. This study aims at designing and evaluating light source devices that can stably generate light with various kinds of wavelengths In order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source device was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-400. The transmission part of the light source was, developed to enhance the efficiency of light transmission. To evaluate this light source device, the characteristics of the light output and wavelength band were verified. To validate the capability of this device as PDD the detection of auto-fluorescence using mouse was performed.

  • PDF

800nm 파장 여기관에 의한 $Tm^{3+}$첨가 유리내 상향 전이 현상 기구 (Upconversion Mechanisms in $Tm^{3+}$-doped Glasses under 800 nm Excitation)

  • 정훈;정운진;허종
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.111-116
    • /
    • 2000
  • 700nm red emission(3F3longrightarrow3H6) in Tm3+ ion with 800 nm(3H6longrightarrow3H4) excitation via upconversion process has been reported only in host materials which have low phonon energies such as halide crystals. However, we observed 700nm and 480nm(1G4longrightarrow3H6) upconverted emission with 800nm excitation in several oxide glasses which has never reported. With spectroscopic analyses and lifetime measurements of each nergy level of Tm3+ ion doped in various oxide glasses, following mechanisms are suggested. For red upconversion, upconversion mechanism changed with Tm3+ concentration. While direct excitation up to 3F3 level via anti-Stokes excitation was dominated at low concentration, two-step excitation via 3H6longrightarrow3H4 and 3F4longrightarrow3F3 transitions was dominated at high concentration. For blue upconversion, two step excitation mechanism up to 1G4 level was suggested as follows : electrons are exciated up to 3H5 with direct excitation with pumping light up to 3H4 followed by multiphonon relaxation, and then additional reabsorption of pumping light excites electrons up to 1G4.

  • PDF

Photodynamic Therapy for Cancer without External Light Illumination by Utilizing Radioisotope-induced Cerenkov Luminescence as an Excitation Source

  • Chi Soo Kang;Md. Saidul Islam;Dohyeon Kim;Kyo Chul Lee
    • 대한방사성의약품학회지
    • /
    • 제9권1호
    • /
    • pp.35-41
    • /
    • 2023
  • Photodynamic therapy (PDT), in which a photosensitizer (PS), light, and molecular oxygen are essential components, is a non-invasive and highly effective cancer therapeutic method. However, PDT suffers from the penetration limit of light caused by attenuation and scattering of light through tissues constraining its use to skin and endoscopically accessible cancers. Cerenkov luminescence (CL) is defined as the light illuminated when charged particles move in a dielectric medium at a velocity greater than the phase velocity of light. It is known that medical radioisotopes in preclinical and clinical settings have enough energy to generate CL, and lately, CL has been exploited as an excitation source for PDT without external light illumination. This review introduces state of the art studies of radioisotope-based PDT for cancer, in which radioisotopes are utilized as a light source.