• 제목/요약/키워드: Exchangeable Al

검색결과 63건 처리시간 0.029초

치환성(置換性) Al 함량(含量)에 따른 석탄소요량(石炭所要量) 결정(決定)에 관(關)한 연구(硏究) (A study on determination of the lime requirement based on exchangeable aluminum content)

  • 류인수;조성진;육창수
    • 한국토양비료학회지
    • /
    • 제7권3호
    • /
    • pp.185-191
    • /
    • 1974
  • 치환성(置換性) Al 함량(含量)에 근거(根據)한 석회소요량결정방법(石灰所要量決定方法)을 우리나라 밭 토양(土壤)에 대(對)하여 검토(檢討)한 목적(目的)으로 실내(室內) 및 Pot시험(試驗)을 실시(實施)하였던 바 그 결과(結果)는 다음과 같다. 1. 공시(供試)된 반토양(土壤)의 pH는 5.0-5.4이었고 치환성(置換性) Al함량(含量)은 1.1~3.0me/100g 범위(範圍)에 있어 경작년도(耕作年度)가 오래된 토양(土壤)일수록 그 함량(含量)은 적었다. 2. 항온(恒溫) 실험결과(實驗結果)에서 광질토양(鑛質土壤)에 있어서는 치환성(置換性) Al의 100% 상당하는 당량(當量)의 중화석회량(中和石灰量) (토양별 소석회량(消石灰量) 범위(範圍)는 45~122kg/10a)으로 대부분의 Al이 중화(中和)되어 Al 중화비율(中和比率)은 평균(平均)95% 이었으나 화산회토양(火山灰土壤)에서는 200%의 중화석회량(中和石灰量)으로도 치환성(置換性) Al이 66.5% 만이 중화(中和)되어 더욱 많은 량(量)(100% 중화량(中和量)외 약(約) 3 배(倍))의 석회(石灰)를 요구(要究)하였다. 3. 광질토양(鑛質土壤)에서는 95%의 치환성(置換性) Al이 중화(中和)되었을 때 평균(平均) pH는 5.2에서 6.3으로 높아졌으며 화산회토양(火山灰土壤)에서는 치환성(置換性) Al의 200% 중화석회량가용(中和石灰量加用)으로 pH는 5.3에서 5.5로 변화(變化)되었을 뿐이었다. 4. 치환성(置換性) Al과 치환산도(置換酸度)($y_1$)의 두 측정치(測定値)(me 단위(單位)) 간(間)에는 r=0.99로서 고도(高度)의 상관관계(相關關係)가 있었으므로 치환산도(置換酸度)는 주로 치환성(置換性) Al에 기인(起因)된 것이라는 사실(事實)을 확인(確認)하였다. 5. 야산지토양(野山地土壤)인 송정통(松亭統) 표토(表土)에 콩을 재배(栽培)한 Pot시험(試驗)에서 인산흡수계수(燐酸吸收係數)의 5% 상당(相當)의 인산(燐酸)(32.1kg/10a)을 중과석(重過石)과 용성인비(熔成燐肥)로 시용(施用)했을 때 치환산도(置換酸度)를 기준한 최적석회소요량(最適石灰所要量)(me) 산출(算出)을 위(爲)한 Liming factor는 중과석(重過石) 1.132, 용성인비(熔成燐肥) 0.594이었고 작물생육(作物生育)을 위한 최적(最適) pH는 6.0 부근이었으며 최적(最適) Al의 중화비율(中和比率)은 80~90% 이었음을 보여 주었다.

  • PDF

Pine Forest Soil Characteristics and Major Soil Impact Factors for Natural Regeneration

  • Kim, Min-Suk;Kim, Yong-Suk;Min, Hyun-Gi;Kim, Jeong-Gyu;Koo, Namin
    • 한국토양비료학회지
    • /
    • 제50권3호
    • /
    • pp.179-186
    • /
    • 2017
  • This study was conducted to identify characteristics of domestic pine forest soils and to elucidate major soil influencing factors for natural regeneration. We analyzed the physico-chemical characteristics of the soil samples collected from 23 pine forests and confirmed the similar results with the forest soil characteristics. Soil pH, organic matter content, total nitrogen, exchangeable Ca, silt content, and exchangeable Al were selected as the major soil factors among the exposed soils through 10 days of pine seedlings exposure and cultivation experiments and statistical analysis. Multiple regression analysis showed that soil pH had a positive effect on specific root length (SRL) of red pine seedlings and exchangeable Al was a significant factor affecting negative change in SRL. Taken together, the reduction of exchangeable Al by soil pH adjustment would be helpful for natural regeneration by restoring the forest and improving the fine root and root integrity of pine seedlings. Therefore, soil pH and exchangeable Al could be recommended as a major soil factor to be carefully considered in the monitoring and management of soil in pine forests that need to be renewed in the future.

Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade

  • You, Jiangfeng;Liu, Xing;Zhang, Bo;Xie, Zhongkai;Hou, Zhiguang;Yang, Zhenming
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.81-88
    • /
    • 2015
  • Background: In Changbai Mountains, Panax ginseng (ginseng) was cultivated in a mixture of the humus and albic horizons of albic luvisol in a raised garden with plastic shade. This study aimed to evaluate the impact of ginseng planting on soil characteristics. Methods: The mixed-bed soils were seasonally collected at intervals of 0-5 cm, 5-10 cm, and 10-15 cm for different-aged ginsengs. Soil physico-chemical characteristics were studied using general methods. Aluminum was extracted from the soil solids with $NH_4Cl $(exchangeable Al) and Na-pyrophosphate (organic Al) and was measured with an atomic absorption spectrophotometer. Results: A remarkable decrease in the pH, concentrations of exchangeable calcium, $NH_4^+$, total organic carbon (TOC), and organic Al, as well as a pronounced increase in the bulk density were observed in the different-aged ginseng soils from one spring to the next. The decrease in pH in the ginseng soils was positively correlated with the $NH_4^+$ (r=0.463, p<0.01), exchangeable calcium (r=0.325, p<0.01) and TOC (r= 0.292, p < 0.05) concentrations. The $NO_3^-$ showed remarkable surface accumulation (0-5 cm) in the summer and even more in the autumn but declined considerably the next spring. The exchangeable Al fluctuated from $0.10mg\;g^{-1}$ to $0.50mg\;g^{-1}$ for dry soils, which was positively correlated with the $NO_3^-$ (r=0.401, p < 0.01) and negatively correlated with the TOC (r=-0.329, p < 0.05). The Al saturation varied from 10% to 41% and was higher in the summer and autumn, especially in the 0-5 cmand 5-10 cm layers. Conclusion: Taken together, our study revealed a seasonal shift in soil characteristics in ginseng beds with plastic shade.

한국산성토양의 pH 완충력과 석회소요량 특성 (pH Buffer Capacity and Lime Requirement of Korean Acid Soils)

  • 김유학;윤정회;정병간;장용선;곽한강
    • 한국토양비료학회지
    • /
    • 제37권6호
    • /
    • pp.378-382
    • /
    • 2004
  • Soil pH is an important indicator for soil reactions and crop growth. pH buffer capacity and lime requirements are necessary to comprehend and manage soils well. The characteristics related with soil pH were analyzed and 5 field trials were conducted to elucidate pH buffer capacity of soil and lime requirements and liming factor for Korean acid soils. Soil minerals were analyzed for the soil of 2 years after treating $CaCO_3$ using X-ray diffraction. The amount of neutralized $H^+$ was regarded as the exchangeable aluminium overcoming ${\Delta}pH$, because pH buffer capacity of soil depended on exchangeable aluminium. Lime requirement was somewhat similar to the KCl exchangeable aluminium and it was also affected by the exchangeable cation by added lime. X-ray diffraction analyses revealed that an aluminium dissociation from Korean acid soils was equilibrated with kaolin minerals and changed into anorthite ($CaAl_2Si_2O_8$) by neutralizing with $CaCO_3$. Neutralizing process was composed of changing process of $Al^{3+}$ into $H^+$ and $Al(OH)_4{^-}$ ionic species and of neutralizing $H^+$ by, the amount of which was lime requirement. The fact that anorthite dissociates an aluminium ion higher than kaolinite does enabled to consider a liming factor (LF) the content of exchangeable cation and ${\Delta}pH$, $LF=1.5+0.2{\times}{\sum} Cations{\times}{\Delta}pH$.

On Crossing Changes for Surface-Knots

  • Al Kharusi, Amal;Yashiro, Tsukasa
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1247-1257
    • /
    • 2016
  • In this paper, we discuss the crossing change operation along exchangeable double curves of a surface-knot diagram. We show that under certain condition, a finite sequence of Roseman moves preserves the property of those exchangeable double curves. As an application for this result, we also define a numerical invariant for a set of surface-knots called du-exchangeable set.

Tree Ring Ca/Al as an Indicator of Historical Soil Acidification of Pinus Densiflora Forest in Southern Korea

  • Lee, Kwang-Seung;Hung, Dinh Viet;Kwak, Jin-Hyeob;Lim, Sang-Sun;Lee, Kye-Han;Choi, Woo-Jung
    • 한국환경농학회지
    • /
    • 제30권3호
    • /
    • pp.229-233
    • /
    • 2011
  • BACKGROUND: Soil acidification, which is known to be one of the reasons of forest decline, is associated with decreases in exchangeable Ca and increases in Al concentration, leading to low Ca/Al ratio in soil solution. As tree rings are datable archives of environmental changes, Ca/Al ratios of annual growth ring may show decreasing pattern in accordance with the progress of soil acidification. This study was conducted to investigate Ca/Al pattern of Pinus densiflora tree ring in an attempt to test its usefulness as an indicator of historical soil acidification. METHODS AND RESULTS: Three P. densiflora tree disks were collected from P. densiflora forests in Jeonnam province, and soil samples (0-10, 10-20, and 20-30 cm in depth) were also collected from the tree locations. Soils were analyzed for pH and exchangeable Ca and Al concentrations, and Ca/Al was calculated. Annual growth rings formed between 1969 and 2007 were separated and analyzed for Ca/Al. Soil Ca/Al was positively (P<0.01) correlated with soil pH, suggesting that soil acidification decreased Ca while increasing Al availability, lowering Ca/Al in soil solution. The Ca/Al of tree rings also showed a decreasing pattern from 18.2 to 5.5 during the period, and this seemed to reflect historical acidification of the soils. CONCLUSION(s): The relationship between soil pH and Ca/Al and the decreasing pattern of Ca/Al of tree ring suggest that Ca/Al of tree ring needs to be considered as a proxy of the progress of soil acidification in P. densiflora forest in southern Korea.

인공산성비 처리가 토양의 화학적 성질에 미치는 영향 (Effects of Simulated Acid Rain on Soil Chemical Properties)

  • 유관식
    • 한국토양비료학회지
    • /
    • 제31권4호
    • /
    • pp.400-406
    • /
    • 1998
  • 사양토, 양토, 식양토의 3 가지의 토양을 $2^{{\prime}{\prime}}{\times}30cm(D{\times}L)$ column에 충진한 후 인공 산성비(pH 2.0, 4.0, 6.0) 1,200mm를 처리하여 산성비의 토양내 침투수량에 따른 토양의 산성화 경향, 토양 중 무기양분의 용탈과 이동양상과 산성비 토양투입에 따른 석회 중화양을 비교검토한 결과, 산성비 처리에 따른 각 토양의 pH 변화는 산성비의 pH가 4.0과 6.0에서는 별 차이가 없었으나, pH 2.0에서는 토심별로 큰 차이를 보였으며 pH감소는 사양토>양토>식양토의 순이었고, 치환산도(치환성 Al+H)는 식양토>양토>사양토의 순위였다. 산성비에 따른 각 토양의 토심별 양분 용탈량은 산성비의 pH 2.0에서 많았으며, 사양토, 양토와 식양토의 경우, 각토양 공히 Ca>K>Mg 순위였다. 토양의 pH감소와 치환산도(치환성 Al+치환성 H)는 사양토 > 양토 > 식양토의 순위였으나, pH감소에 따라 증가되는 치환산도는 그 토양의 CEC범위내 이었다. 토양내의 치환성 Al는 토양의 pH가 5이하에서는 거의 없었다. pH 3.0인 산성비(황산:질산=2:1, $1,200mm\;year^{-1}$)의 유입에 따른 H이온의 유입은 $12kg\;ha^{-1}\;year^{-1}$, 산성비의 토양유입은 S와 N가 각각 128과 $56kg\;ha^{-1}{\cdot}year^{-1}$이었으며, 이를 중화할 수 있는 소석회의 양은 $444kg\;ha^{-1}\;year^{-1}$이지만 실제로 용탈된 염기는 소석회로 사양토 923, 양토 1,731, 식양토 $1,608kg\;ha^{-1}\;year^{-1}$로 추정되었다.

  • PDF

산지토양(山地土壤)의 특성(特性)과 개량(改良) (Soil Characteristics and Improvement of Reclaimable Hillside Land)

  • 류인수
    • 한국토양비료학회지
    • /
    • 제11권4호
    • /
    • pp.247-262
    • /
    • 1979
  • Majority of reclaimable soils in hillside lands in Korea are red yellow soils, with exception in Jeju island, where most of reclaimable hillside lands are composed of volcanic ash soils. Songjeong, Yesan and Samgag series are the major soil series of red yellow soils which are available for the reclamation. When observed in the fields, they are distinguished as reddish brown clay loam, red yellow sand loam and yellowish brown sand loam. They have moderately good physical properties but their chemical properties are generally poor for crop cultivations. The chemical properties of red yellow soils, as compared to long time cultivated (matured) soils, are characterized by very low pH, high in exchangeable Al content and phosphorus fixation capacity. Also extraodinary low available phosphorus and organic matter contents are generally observed. On the other, the chemical properties of volcanic ash soils are characterized by high armophous Fe and Al hydroxides and organic matter contents, which are the causative factors for the extremely high phosphorus fixation capacity of the soils. The phosphorus fixation capacity of volcanic acid soils are as high as 5-10 times of that of red yellow soils. Poor growth of crops on newly reclaimed red yellow soils are mainly caused by very low available P and pH and high exchangeable Al. Relatively high P fixation capacity renders the failure of effective use of applied P when the amount of application is not sufficient. Applications of lime to remove the exchangeable Al and relatively large quantity of P to lower the P fixation capacity and to increase the available P are the major recommendations for the increased crop production on red yellow hillside soils. Generally recommendable amounts of lime and P to meet the aforementioned requirements, are 200-250kg/10a of lime and $30-35kg\;P_2O_5/10a$. Over doses of lime. frequently induces the K, B, arid Zn deficiencies and lowers the uptake of P. In volcanic ash soils, it is difficult to alter the exchangeable Al and the P fixation capacity by liming and P application. This may be due to the peculiarity of volcanic ash soil in chemical properties. Because of this feature, the amelioration of volcanic ash soils is not as easy as in the case of red yellow soils. Application of P as high as $100kg\;P_2O_5/10a$ is needed to bring forth the significant yield response in barley. Combined applications of appropriate levels of P, lime, and organic matter, accompanied by deep plowing, results in around doubling of the yields of various crops on newly reclaimed red yellow soils.

  • PDF

모암에 따른 삼림과 초지 토양의 완충능 및 비옥도에 관한 연구 (Studies on the Soil Buffer Action and Fertility of Soil Derived from the Different Parent Rocks)

  • 장남기;임영득
    • 아시안잔디학회지
    • /
    • 제9권1호
    • /
    • pp.81-89
    • /
    • 1995
  • The variations of the soil texture, $SiO_2$ /$Al_2$$O_3$ ratio, buffer action, exchangeable base, ex-changeable hydrogen, and mineral nutrients were investigated to estimate the grade of the soil fertility of the soil derived from the different parent rocks such as the granite in Kwangnung and the basalt in Chejudo. The results investigated were showed as follows : Basalt soils in Chejudo belong to sandy clay, light clay and sandy clay loam, while gramite soils in Kwangnung sandy loam. The $SiO_2$ /$AI_2$$O_3$ ratio of the grassland in Chejudo was 1.11 and that of the oak forest soils was 1.24, while granite soils in Kwangnung 1.54 and 1.46, respectively. The buffer actions of ba-salt soils against the N /10 HCI and $Ca(OH)_2$ were stronger than those of granite soils. The $SiO_2$/$Al_2$$O_3$ + $Fe_2$$O_3$ ratios of grassland and oak forest soils of basalt in Chejudo showed 1.10 and 1.24 respectively, while those of the grassland and oak forest of Kwangnung 1.44 and 1.33. The base exchange capacity of basalt soils which has higher value of exchangeable hydrogen was stronger than that of granite soils. But the base saturation of granite soils showed higher value than that of basalt soils. Water contents of basalt soils in Chejudo was lower than that of granite soils fo Kwangnung Basalt soils in Chejudo contain still more humus and total nitrogen than gran-ite soils in kwangnung, The amount of available nitrogen, available phosphorus and exchangeable calcium of granite soils were more than that of basalt soils, Therefore, estimating the soil fertility, granite soils in Kwangnung is higher than that of basalt soils in Chejudo.

  • PDF