• Title/Summary/Keyword: Exchange flow

Search Result 831, Processing Time 0.034 seconds

The Development of XML Message for Status Tracking the Importing Agrifoods During Transport by UBL (UBL 기반 수입농수산물 운송 중 상태 모니터링을 위한 XML 메시지 개발)

  • Ahn, Kyeong Rim;Ryu, Heeyoung;Lee, Hochoon;Park, Chankwon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.159-171
    • /
    • 2018
  • The imported foods, which are imported and sold domestically, are on the rise every year, and the scale is expected to be larger, including processing the imported raw materials. However, the origin of raw materials is indicated when declaring cargo for finished products of agricultural products, but the standardization of inspection information management system for raw materials is insufficient. In addition, there is a growing concern about the presence of residual pesticides or radioactivity in raw materials or products, and customer want to know production history information when purchasing agrifoods. It manages the hazard analysis of imported agricultural products, but most of them are global issues such as microorganisms, residual pesticides, food additives, and allergy components, etc. Therefore, it is necessary to share among the logistics entities in the entire transportation process the related data. Additionally, to do this, it needs to design an architecture and standardize business model. In this paper, it defines the architecture and the work-flow that occurs between the business process for collecting, processing, and processing information for tracking the status of imported agricultural products by steps, and develops XML message with UBL and the extracted conceptual information model. It will be easy to exchange and share information among the logistics entities through the defined standard model and it will be possible to establish visibility, reliability, safety, and freshness system for transportation of agricultural products requiring real-time management.

Construction Process Modelling Method Improving the Traceability of ICT Applications (ICT 적용 추적성 개선을 위한 시공관리 프로세스 모델링)

  • Go, Taeyong;Lim, Taekyung;Lee, Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.114-123
    • /
    • 2019
  • Tracking ICT applications on construction business processes is critical to the success of ICT-applied construction projects. Existing IDEF0 is a representative modeling method for visualizing and analyzing business processes. It defines a construction production process into a visual information model, hence, encouraging the project participant to understand the activities, their deliverable, and control flow of the process. However, IDEF0 dose not lend itself to ICT-applied construction processes, because it does not provide a mean to define how, in what order, by which each and every activity that ICT applied implements. This paper presents a new business modeling method that improves the traceability of ICT application (IAMB: ICT Application tracking Model for Business process) for construction management. The IAMB contributes to handle the sophisticated features of construction management processes to which ICT are applied. The method categorizes the process into three types: management, construction, and information exchange. The validity of IAMB was confirmed by analyzing the performance when it is used for tracking each modeling step of lift reservation process which making use of ICT. The test case provides an admissible evidence that the method encourage to define who, what, how, which order, and by which ICT tools the construction process exchanges production information.

Durability Evaluation of Stationary PEMFC MEA by OCV Holding Method (정치용 PEMFC MEA의 OCV 유지 방법에 의한 내구 평가)

  • Oh, So-Hydong;Lee, Mihwa;Yun, Jeawon;Lee, Hakju;Kim, Wookwon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.344-350
    • /
    • 2019
  • Durability is very important for the commercialization of membranes and electrode assemblies (MEA) developed for proton exchange membrane fuel cells (PEMFC). Durability evaluation of stationary PEMFC MEA has a problem that the voltage change rate should be measured for a long time over 1000 hours under constant current conditions. In this study, the electrochemical durability evaluation protocol of membranes (OCV holding method) using to vehicle MEAs was applied to the stationary MEA for the purpose of shortening the durability evaluation time. After operation of the stationary and automobile MEA for 168 hours under conditions of OCV, cathode oxygen, $90^{\circ}C$ and relative humidity of 30%, I-V, LSV, CV, impedance and FER were measured and compared. When the hydrogen permeability, OCV change, ionic conductivity, and fluorine flow rate, which represent the durability of the membrane after degradation, were all examined, it was shown that durability of stationary MEA membrane was better than that of vehicles MEA membrane. In addition, the electrode degradation of stationary MEA was smaller than that of vehicles MEA after degradation operation. It was possible to evaluate in a short time using automotive protocol that the durability of stationary MEA was superior that of vehicle MEA in terms of membrane and the electrode.

Two Crystal Structures of Dehydrated Ag$^+$ and K$^+$Exchanged Zeolite A, $Ag_{12-x}K_x$-A, x = 1.3 and 2.7

  • Kim, Yang;Song, Seong-Hwan;Park, Jong-Yul;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.338-341
    • /
    • 1988
  • Two crystal structures of fully dehydrated silver and potassium exchanged zeolite A, stoichiometries of $Ag_{9.3}K_{{2.7}^-}A$ (${\alpha}$ = 12.282(2) ${\AA}$) and $Ag_{10.7}K_{{1.3}^-}{\AA}$ (${\alpha}$ = 12.287(2) A) per unit cell, have been determined from 3-dimensional x-ray diffraction data gathered by counter methods. All structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}C$ . The crystals of $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$ were prepared by flow method using exchange solutions in which mole ratios of $AgNO_3$ and $KNO_3$ were 1:10 and 1:5, respectively, with total concentration of 0.05M. The structures of the dehydrated $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$ were refined to yield the final error indices $R_1$ = 0.037 and $R_2$ = 0.040 with 321 reflections, and $R_1$ = 0.042 and $R_2$ = 0.043 with 371 reflections, repectively, for which I > 3${\sigma}$(I). In both structures, eight $Ag^+$ ions are found nearly at 6-ring centers and each $Ag^+$ ion is nearly in the (1 1 1) plane at its O(3) ligands. The 8-ring sites are preferentially occupied by $K^+$ ions in both structures. 1.3 and 1.7 reduced silver atoms per unit cell were found inside of sodalite units of $Ag_{9.3}K_{{2.7}^-}A$ and that of $Ag_{10.7}K_{{1.3}^-}A$, respectively. These reduced silver species were presumably formed from the reduction of $Ag^+$ ions by oxide ions of residual water molecule or of the zeolite framework. These two crystals may be presented as hexasilver cluster in 21.7% and 28.3% of sodalite unit cells for $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$, repectively.

Two Crystal Structures of $Tl^+$ and $Zn^{2+}$ Exchanged Zeolite A, $Tl_{12-2x}Zn_x-A$ (x=4.3 and 3.25)

  • Mi Suk Jeong;Seong Hwan Song;Young Wook Han;Yang Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.150-154
    • /
    • 1990
  • The structures of $Tl_{12-2x}Zn_x-A$ (x = 4.3 and 3.25), vacuum dehydrated zeolite A with all $Na^+$ ions replaced by $Tl^+$ and $Zn^{2+}$ as indicated, have been determined by single-crystal X-ray diffraction techniques in cubic space group Pm3m at 21(1) $^{\circ}C$ (a=12.100(2) ${\AA}$ for $Tl_{3.4}Zn_{4.3}-A$ and a=12.092(2) ${\AA}$ for $Tl_{5.5}Zn_{3.25}-A$). The crystals of $Tl_{3.4}Zn_{4.3}-A$ and $Tl_{5.5}Zn_{3.25}-A$ were prepared by flow method using exchange solutions in which mole ratios of $TlNO_3$,/TEX> and $Zn(NO_3)_2$ were 1:50 and 1:1, respectively, with total concentration of 0.05 M. The structures of the dehydrated $Tl_{3.4}Zn_{4.3}-A$ and $Tl_{5.5}Zn_{3.25}-A$ were refined to yield the final error indices $R_1$ = 0.075 and $R_2$ = 0.075 with 236 reflections, and $R_1$ = 0.057 and $R_2$ = 0.064 with 202 reflections, respectively, for which I > 3$\sigma$(I). Both structures indicate that Zn(II) ions are coordinated by three framework oxygens: the Zn(II) to O(3) distances are 2.08(1) ${\AA}$ for $Tl_{3.4}Zn_{4.3}-A$ and 2.07(1) ${\AA}$ for $Tl_{5.5}Zn_{3.25}-A$, respectively. In each structure, the angle subtended at Zn(II), O(3)-Zn(II)-O(3) is 119.9(3)$^{\circ}$ for $Tl_{3.4}Zn_{4.3}-A$, and 120.0(3)$^{\circ}$ for $Tl_{5.5}Zn_{3.25}-A$, respectively, close to the idealized trigonal-planar value. Zn(II) ions prefer to 6-ring sites. $Tl^+$ ions do not have any preference to a particular site but occupy simultaneously both at the 6-ring sites and 8-ring sites.

A Study on Analysis of Freshwater-saltwater Interface in the Aquifer around Hwajinpo Lagoon on the Eastern Coast of Korea (동해안 화진포 석호 주변 대수층 내 담수-염수 경계면 분석에 관한 연구)

  • Kim, Minji;Kim, Dongjin;Jun, Seong-Chun;Lee, Jeonghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.699-707
    • /
    • 2021
  • Hwajinpo Lagoon, located on the eastern coast of Korea, is a unique environment where freshwater and saltwater are mixed. Systematic management of the lagoon is required because it is a biodiversity-rich and area of high conservation value. The existing environment of the lagoon was evaluated by identifying the distribution of the groundwater level and groundwater flow characteristics. In addition, hydrogeochemical fluctuations were analyzed to determine the effect of seawater intrusion into the aquifer. The results demonstrate that the freshwater-saltwater interface is distributed throughout the aquifer and rises when water of the lagoon evaporates due to prolonged periods of low rainfall and high temperature, thereby increasing the possibility of seawater inflow through groundwater. As for the ionic delta properties (difference between the measured and theoretical concentration of mixed waters), it was estimated that the cation-exchange and precipitation reactions occurred in the aquifer due to seawater intrusion. The ratio of seawater mixed at each point was calculated, using oxygen isotopes and chloride as tracers, resulting in an average of 0.3 and a maximum of 0.87. The overall seawater mixing ratio appears to be distributed according to the distance from the coast. However, some of the results were deviated from the theoretical expectations and reflected the characteristics of the nearby aquifers. Further research on seasonal changes and simulation of seawater intrusion mechanisms is required for specific analysis.

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.

Phytochemical variation of Quercus mongolica Fisch. ex Ledeb. and Quercus serrata Murray (Fagaceae) in Mt. Jiri, Korea - Their taxonomical and ecological implications - (지리산 신갈나무와 졸참나무의 식물화학적 변이 양상 - 분류학적, 생태학적 의미 -)

  • Park, Jin Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.574-587
    • /
    • 2014
  • In this study, vertical distribution patterns of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray in Korea were recognized and possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Jiri was inferred by flavonoid analyses. The most critical factor on distribution patterns was the altitude in accordance with temperature condition. A zonal distribution was recognized: Quercus mongolica zone in the upper area and Q. serrata zone in the lower area. In Central Korea, the range of vertical distribution of Q. mongolica was above alt. 100m, almost everywhere, whereas that of Q. serrata was from alt. 0 m to alt. 500(-700) m, and the species is rare above that altitude. But in Southern Korea, Q. serrata is found up to above alt. 1,000 m, whereas frequency of Q. mongolica reduces as elevation in decline and the species is rare below alt. 300 m, even though pure stands being formed on higher mountain slope. Altitudinal distribution of the two species, however, overlaps, where the two species occur together. Thirty-seven individuals of Q. mongolica and Q. serrata in Mt. Jiri and other area were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols kaempferol, quercetin, isorhamnetin, myricetin, and four compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside and by high concentration of three acylated compounds, acylated kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and by relatively low concentration or lacking of rhamnosyl flavonol compounds. There are intraspecific variations in flavonoid profiles for Q. mongolica and Q. serrata, the flavonoid profiles for individuals of two species in hybrid zone (sympatric zone) tend to be similar to each other, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through the introgressive hybridization between Q. mongolica and Q. serrata in Mt. Jiri. Therefore, Quercus crispula, occupying morphologically intermediate position between Q. mongolica and Q. serrata, is suspected of being a hybrid taxon of two putative parental species.

Flavonoid Profiles of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray (Fagaceae) in Mt. Seorak, Korea: Taxonomical and Ecological Implications (설악산 신갈나무와 졸참나무의 플라보노이드 조성과 분류학적, 생태학적 의미)

  • Park, Jin Hee
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1092-1101
    • /
    • 2014
  • In this study, the distribution patterns of Quercus mongolica and Q. serrata in Korea were investigated, and the possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Seorak was inferred by flavonoid analyses. The most critical factor in the vertical and horizontal distribution patterns of Q. mongolica and Q. serrata was the temperature, in accordance with latitude and altitude. The species showed a zonal distribution, with a Q. mongolica zone in the upper area and a Q. serrata zone in the lower area. In Mt. Seorak, Central Korea, the range of the vertical distribution of Q. mongolica was generally above an altitude of 100 m, whereas that of Q. serrata was an altitude of 0-400 m (-500) and rarely above an altitude of 500 m. However, in Mt. Jiri, Southern Korea, Q. serrata was found up to an altitude of 1,000~1,200 m, whereas the frequency of Q. mongolica was reduced at lower elevations and the species was rare below an altitude of 300 m, although pure stands were found on higher mountain slopes above an altitude of 1,200 m. The altitudinal distribution of the two species overlapped, where the two species occurred together. The leaf flavonoid constituents of thirty-four individuals of Q. mongolica and Q. serrata in Mt. Seorak and Mt. Jiri, Korea were examined. Twenty-four flavonoid compounds were isolated and identified. These were glycosylated derivatives of flavonols kaempferol, quercetin, isorhamnetin, myricetin. Five compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside, a high concentration of three acylated compounds (kaempferol 3-O-glucoside, quercetin 3-O-glucoside, and quercetin 3-O-galactoside), and a relatively low concentration or lack of rhamnosyl flavonol compounds. Intraspecific variations, however, were found in the flavonoid profiles of Q. mongolica and Q. serrata, and the flavonoid profiles of individuals belonging to the two species in a hybrid zone (sympatric zone) tended to be similar, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through introgressive hybridization between Q. mongolica and Q. serrata in Mt. Seorak.