• Title/Summary/Keyword: Exchange current density

Search Result 147, Processing Time 0.029 seconds

Hydraulic Model Experiment on Circulation in Sagami Bay, Japan (IV) -Time-Varying States of Flow Pattern and Water Exchange in Baroclinic Rotating Model-

  • Choo, Hyo-Sang;Takasige Sugimoto
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.1
    • /
    • pp.57-73
    • /
    • 1999
  • Baroclinic hydraulic model experiments on the time-varying states of the flow pattern and water exchange in Sagami Bay were carried out based on quasi-steady state experiments on the flow pattern. For the model experiments, density changes as well as time changes in the volume transport of the upper layer were executed to investigate the flow response of the bay in the case of a sudden inflow of low density water and variable volume transport into the Sagami Bay. The results of the model experiments showed that when the volume transport was increased frontal eddies or frontal wave streamers from the Kuroshio Through Flow were transferred to the inner part of the bay along with cyclonic circulation in the bay. In addition, density boundary currents appeared and flowed along the eastern boundary of the bay. As the upper layer density decreased, frontal eddies, frontal streamers and coastal boundary density currents occurred and proceeded along the eastern boundary of the bay at a high speed.

  • PDF

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.

Comparison of Hydrogen Crossover Current Density by Analysis Method of Linear Sweep Voltammetry(LSV) in Proton Exchange Membrane Fuel Cells (고분자전해질연료전지에서 선형주사전압전류측정법(LSV)의 분석방법에 따른 수소투과전류밀도 비교)

  • Oh, Sohyeong;Hwang, Byungchan;Lee, Mooseok;Lee, Donghoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.151-155
    • /
    • 2018
  • Degree of membrane degradation in Proton Exchange Membrane Fuel Cells (PEMFC) is mainly evaluated by the hydrogen crossover current density. The hydrogen crossover current density is measured by linear sweep voltammetry (LSV), which differs from the DOE protocol and the NEDO protocol. In this study, two protocols were compared during PEMFC operation and accelerated stress test. In the LSV method by the DOE method, the scan rate change affects the hydrogen crossover current density, but the NEDO method does not affect the hydrogen crossover current density. In the course of 15,000 cycles of polymer membrane wet/dry cycle, the DOE method was sensitive to membrane degradation, but the NEDO method was less sensitive to membrane degradation than the DOE method.

Destruction of Spent Organic ion Exchange Resins by Ag(II)-Mediated Electrochemical Oxidation (Ag(II)매개산화에 의한 폐 유기이온교환수지의 분해)

  • Choi Wang-Kyu;Nam Hyeog;Park Sang-Yoon;Lee Kune-Woo;Oh Won-Zin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.183-189
    • /
    • 1999
  • A study on the destruction of organic cation and anion exchange resins by electro-generated Ag(II) as a mediator was carried out to develop the ambient-temperature aqueous process, known as Ag(II)-mediated electro-chemical oxidation (MEO) process, for the treatment of a large quantity of spent organic ion exchange resins as the low and Intermediated-level radioactive wastes arising from the operation, maintenance and repairs of nuclear facilities. The effects of controllable process parameters such as applied current density, temperature, and nitric acid concentration on the MEO of organic ion exchange resins were investigated. The cation exchange resin was completely decomposed to $CO_2$. The current efficiency increased with a decrease in applied current density while nitric acid concentration and temperature on the MEO of cation exchange resin did not affect the MEO. On the other hand, anion exchange resins were decomposed to CO and $CO_2$. The ultimate conversion to CO was about $10\%$ regardless of temperature. The destruction efficiencies to $CO_2$ were dependent upon temperature and the effective destruction of anion exchange resin could be obtained above $60^{\circ}C$.

Change of the Efficiency in All-Vanadium Redox Flow Battery with Current Density (전류밀도에 따른 바나듐 레독스 흐름 전지의 효율 변화)

  • CHOI, HO-SANG;IN, DAE-MIN;SONG, YOUNG-JOON;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.531-535
    • /
    • 2017
  • The performance of all-vanadium redox flow battery (VRFB) was tested with an increase of the current density. APS membrane (anion exchange membrane) and GF050CH (cabon felt) were used as a separator and electrode, respectively. An average energy efficiency of the VRFB was 79.5%, 68.1%, and 62.8% for the current density of $60mA/cm^2$, $120mA/cm^2$, and $160mA/cm^2$, respectively. It was confirmed that VRFB can be used as a energy storage system at the higher current density even if the energy efficiency was deceased about 21%.

Desalting of papermaking tobacco sheet extract using selective electrodialysis

  • Li, Chuanrun;Ge, Shaolin;Li, Wei;Zhang, Zhao;She, Shike;Huang, Lan;Wang, Yaoming
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.381-393
    • /
    • 2017
  • The inorganic components in tobacco sheet extract have significant influence on the sensory taste of the cigars and the harmful component delivery in cigarette smoke. To identify the contributions of the divalent inorganic components on harmful components delivery in cigarette smoke, a self-made selective electrodialysis was assembled with monovalent ion-selective ion exchange membranes. The influences of current density and extract content on the desalination performance were investigated. Result indicates that the majorities chloride, nitrate, and sulfate ions were removed, comparing with 50-60% of potassium and only less than 10% of magnesium and calcium ions removed in the investigated current density. The permselectivity of the tested cations across the Selemion CSO cation exchange membranes follows the order: $K^+>Ca^{2+}>Mg^{2+}$. A current density of $15mA/cm^2$ is an optional choice by considering both the energy consumption and separation efficiency. When the extract contents are in the range of 7%-20%, the removal ratios the potassium ions are kept around 60%, while the removal ratios of the calcium and magnesium ions fluctuate in the range of 16-27% and 8-14%, respectively. The tobacco smoke experiments indicated that the divalent metal ions have dual roles for the harmful component delivery in cigarette smoke. The divalent potassium and calcium ions were unfavorable for the total particulate matter emission but beneficial to decrease the HCN delivery in the mainstream cigarette smoke. The selective electrodialysis is a robust technology to decrease the harmful component delivery in cigarette smoke.

Electrochemical Characteristics of Ion-Exchange Membrane and Charged Mosaic Membrane (복합 하전 모자이크 막과 이온교환 막의 전기적화학적 특성)

  • Yang, Wong-Kang;Song, Myung-Kwan;Cho, Young-Suk
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The effect of anionic and cationic exchange polymer layer on the chronopotentiometry (CP) and current voltage curves (I-V) of charged composite membrane are investigated. Also, the ion transport near the interface between electrolyte and ionic exchange polymer membranes (anionic and cationic ones) and charged mosaic polymer composite membrane is studied. The results show that both anionic and cationic polymer exchange membranes exhibit lower voltage drop over range of applied current density and possess favorable industrial application potentials, especially at low KCl concentration. While the charged mosaic polymer composite membrane didn't show any current-voltage change, irrespective to the type and the concentration of used electrolyte. CP and I-V measurements are effectively used to give some fundamental understanding for ion transport behavior of ion exchange polymer membrane near the interlace.

Concentration Polarization Phenomena in Ion-Exchange Membranes (이온교환막에서의 농도분극 현상)

  • 최재환;문승현
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2002
  • Electrodialysis(ED) is a reliable and effective process for the separation and concentration of ionic compounds. However, commercial uses of ED are often hindered by the cost of the stack that mainly resulted from the ion-exchange membrane cost. In order to minimize the membrane cost, it is desired to operate ED at the highest practicable current density. In an actual ED system the high current operation is limited by the concentration polarization phenomenon. This article illustrates the transport phenomena of ions through ion exchange membranes using current-voltage relations as a characterizing method. Also recent studies on electroconvection and water-spitting phenomena caused by concentration polarization were reviewed.

Analysis of activation, ohmic, and concentration losses in hydrogen fuelled PEM fuel cell

  • Rohan Kumar;K.A Subramanian
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.253-264
    • /
    • 2022
  • This paper deals with the effects of design (active area, current density, membrane conductivity) and operating parameters (temperature, relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The design parameter of a PEM fuel cell with the active area of the single cell considered in this study is 25 cm2 (5 × 5). The operating voltage and current density of the fuel cell were 0.7 V and 0.5 A/cm2 respectively. The variations of activation voltage, ohmic voltage, and concentration voltage with respect to current density are analyzed in detail. The membrane conductivity with variable relative humidity is also analyzed. The results show that the maximum activation overpotential of the fuel cell was 0.4358 V at 0.21 A/cm2 due to slow reaction kinetics. The calculated ohmic and concentrated overpotential in the fuel cell was 0.01395 V at 0.76 A/cm2 and 0.027 V at 1.46 A/cm2 respectively.