• Title/Summary/Keyword: Exchange coupling

Search Result 258, Processing Time 0.026 seconds

Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

  • Chung, Yoon Do;Yim, Seong Woo;Hwang, Si Dole
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

Facile Syntheses and Multi-orthofunctionalizations of Tertiary Benzamides

  • Paek, Kyung-Soo;Kim, Kyung-Mo;Kim, You-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.732-739
    • /
    • 1993
  • Good yields were usually obtained in Pd(O)-catalyzed Suzuki aryl-aryl coupling reaction, even when both coupling partners had an ortho tertiary benzamide functional group. The direct ortho functionalization of oligomeric tertiary benzamides at Snieckus condition is dependent on the chain length. Tertiary benzamide 1 can be o,o-dilithiated only by metal-halogen exchange of the 2,6-dihalo-compound. Bis-tertiary benzamide 9 can be o,o'-dilithiated with excess(4.1 equivalents) s-butyllithium/TMEDA as the lithiating agent. Tris-tertiary benzamide 21 is hard to o,o"-difunctionalize due to steric interactions among the tertiary benzamide functional groups, and due to steric interactions between these functional groups and others (if present) on the termini of the terphenyl unit.

Exchange Biasing and Magnetoresistance in $\alpha-Fe_2O_3 /NiFe/Cu/NiFe$Spin-valves ($\alpha-Fe_2O_3 /NiFe/Cu/NiFe$ 스핀밸브 박막에서의 자기저항 특성에 대한 연구)

  • 김종기;주호완;이기암;황도근;이상석
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.37-41
    • /
    • 2000
  • We investigated the magnetoresistance effect and the exchange coupling of antiferromagnetic Fe$_2$O$_3$ spin-valve film. The X-ray diffractions of the spin-valve films having a different thickness of a $\alpha$-Fe$_2$O$_3$ were measured. The exchange coupling field (H$_{ex}$) between Fe$_2$O$_3$ and pinned NiFe layer was increased from 13.5 Oe to 84.5 Oe, as the thickness of Fe$_2$O$_3$ increased from 400 $\AA$ to 800 $\AA$. The surface roughness of $\alpha$-Fe$_2$O$_3$spin-valves increased with the increase of $\alpha$-Fe$_2$O$_3$thickness. Therefore, the increase of H$_{ex}$ will be due to the increase of the interface roughness. The MR ratios as a function of Fe$_2$O$_3$ thickness was not changed. And H$_{ex}$ increased by the increment of magnetostatic coupling between Fe$_2$O$_3$ and NiFe (pinned-layer) due to the increment of interface roughness. H$_{ex}$ depends on the surface roughness, but the magnetoresistance ratio doesn't doesn't.

  • PDF

Properties of Exchange Bias Coupling Field and Coercivity Using the Micron-size Holes Formation Inside GMR-SV Film (GMR-SV 박막내 미크론 크기의 홀 형성을 이용한 교환결합세기와 보자력 특성연구)

  • Bolormaa, Munkhbat;Khajidmaa, Purevdorj;Hwang, Do-Guwn;Lee, Sang-Suk;Lee, Won-Hyung;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.117-122
    • /
    • 2015
  • The holes with a diameter of $35{\mu}m$ inside the GMR-SV (giant magnetoresistance-spin valve) film were patterned by using the photolithography process and ECR (electron cyclotron resonance) Ar-ion milling. From the magnetoresistance curves of the GMR-SV film with holes measuring by 4-electrode method, the MR (magnetoresistance ratio) and MS (magnetic sensitivity) are almost same as the values of initial states. On other side hand, the $H_{ex}$ (exchange bias coupling field) and $H_c$ (coercivity) dominantly increased from 120 Oe and 10 Oe to 190 Oe and 41 Oe as increment of the number of holes inside GMR-SV film respectively. These results were shown to be attributed to major effect of EMD (easy magnetic domian) having a region positioned between two holes perpendicular to the sensing current. On the basis of this study, the fabrication of GMR-SV applying to the hole formation improved the magnetoresistance properties having the thermal stability and durability of bio-device.

New Macroscopic Ferrimagnets in the System Co-TbN

  • Kim, Tae-Wan;Oh, Jung-Keun
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • This study examines a new macroscopic ferrimagnet, Co-TbN. This ferrimagnet, consisting of two metallic phases, Co and TbN, demonstrated the typical macroscopic ferrimagnet properties of a magnetic compensation point and a negative giant magnetoresistance (GMR). The Co-TbN system with 32% TbN composition showed 0.72% GMR in magnetic fields up to 8 kOe at room temperature and 9% GMR in 40 kOe at 250 K. In the Co-TbN system, GMR exhibited a different dependence on temperature from that of ordinary GMR materials whose negative magnetoresistance decreases with increasing temperature. In contrast to ordinary GMR materials whose negative magnetoresistance decreases with increasing temperature, the GMR effect in the Co-TbN system increased with increasing temperature, due to the increase of ferromagnetic alignment of the Co and TbN in the magnetic field caused by the decreased exchange coupling with increasing temperature.

Triplet Excitation Energy Transfer in Choleic Acid Crystals

  • Kook, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2409-2413
    • /
    • 2007
  • Time resolved phosphorescence of Dibromobenzophenone (DBBP) choleic acid crystal was observed at 4.2 K as functions of excitation energy and delay time. The experimental results reveal that the energy transfer efficiency is dependent on the excitation energy, i.e. the density of acceptors sites. As the excitation energy or delay time increases, the resonance phosphorescence does not broaden and shift gradually, rather a broad luminescence band develops about 290 cm?1 to lower energy of the resonance phosphorescence. The observation implies that energy transfer from high to low energy sites in this system is controlled by emission of phonons or vibrons. The data of time resolved experiments were analyzed in terms of a mechanism involving direct donor-acceptor excitation transport by exchange coupling. It was concluded that an isotropic twodimensional exchange interaction topology is consistent with energy transfer in this system.

Dynamic Transient Phenomena of a Proton Exchange Membrane Fuel Cells (PEMFC 연료전지의 과도현상 특성)

  • Lee, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.203-203
    • /
    • 2010
  • The proton exchange membrane fuel cell (PEMFC) is different from the normal power supply, and it is a nonlinear, multi-input, strong coupling, the complex dynamic system with large time delay. At present, many studies on the content of the fuel cell fuel cells focus on a static process, this paper analyzed in subsequent sections of the process of fuel cell dynamic response time of transition, and then it found the method to reduce the response time during the process of load change to ensure that the stability of output power.

  • PDF

Effects of Magnetic Layer Thickness on Magnetic Properties of CoCrPt/Ti/CoZr Perpendicular Media

  • Hwang, M.S.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.19-22
    • /
    • 2001
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt film thickness has been studied. As the CoCrPt film thickness increases from 25 nm, the Ms (saturation magnetization) increases rapidly at first and then more gradually. This Ms behavior is associated primarily with the formation of an "amorphous-like"reacted layer created by intermixing of CoCrPt and Ti at the CoCrPt/Ti interface and secondarily with a change of the Cr segregation mode with varying CoCrPt film thickness. Magnetic domain structure distinctively changes with increasing CsCrPt magnetic layer (ML) thickness. Also the strength of exchange coupling measured from the slope in the demagnetizing region of the M-H loop changes with ML thickness. The expansion of lattice parameters a and c at smaller film thickness suggests that the Cr segregation mode may be connected with the residual stress of the films. Finally, the negative nucleation field (Hn) shows a unique behavior with the change of strength of the exchange interaction.teraction.

  • PDF

Design and the characteristic analysis of experimental system for automatic control education

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.350-350
    • /
    • 2000
  • Since the heat exchange system, such as the boiler of power plant, gas turbine, and radiator require a high rate heat efficiency and the efficiency of these systems is depended on the control methods. However, it is important f3r operator to understand control system of these systems. In order to properly apply control equipment to these process control systems, such as boiler, any other heat process, or process control system it is necessary to understand the basic aspects and operation principle of the process that relate control, interrelationships of the process characteristics, and the dynamics that are involved. Generally, PID controllers are used in these systems but it is difficult for engineer to understand the complex dynamics and the tuning method because of the coupling action and disturbance in the system loop. In this paper, we design an effective experimental system fur automatic control education and analyze its characteristics through experimental system and industrial plant control software to study how they can team automatic control system by experiments.

  • PDF

Multilevel Magnetization Switching in a Dual Spin Valve Structure

  • Chun, B.S.;Jeong, J.S.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.328-331
    • /
    • 2011
  • Here, we describe a dual spin valve structure with distinct switching fields for two pinned layers. A device with this structure has a staircase of three distinct magnetoresistive states. The multiple resistance states are achieved by controlling the exchange coupling between two ferromagnetic pinned layers and two adjacent anti-ferromagnetic pinning layers. The maximum magnetoresistance ratio is 7.9% for the current-perpendicular-to-plane and 7.2% for the current-in-plane geometries, with intermediate magnetoresistance ratios of 3.9% and 3.3%, respectively. The requirements for using this exchange-biased stack as a three-state memory device are also discussed.