• Title/Summary/Keyword: Exchange Calcium

Search Result 159, Processing Time 0.032 seconds

The Calcium and Magnesium Ion-Exchange Properties of Snythetic δ-Na2Si2O5 from Water Glass (Water Glass로부터 합성한 δ-Na2Si2O5의 Ca2+, Mg2+ 이온교환성)

  • Jeong, Soon-Yong;Suh, Jeong-Kwon;Park, Jeong-Hwan;Doh, Myung-Ki;Koh, Jae-Cheon;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.406-412
    • /
    • 1994
  • The ion-exchange properties of $Ca^{2+}$ and $Mg^{2+}$ ions have been studied in ${\delta}-Na_2Si_2O_5$ synthesized from water glass. Results show that optimum temperature for synthesis of ${\delta}-Na_2Si_2O_5$ was $725^{\circ}C$. Ion-exchange isotherms for $Ca^{2+}$ and $Mg^{2+}$ exchange for $Na^+$ in the synthetic ${\delta}-Na_2Si_2O_5$ show that the ion-exchange capacity of magnesium is better than that of calcium, and the ion-exchange of magnesium is less sensitive for temperature than that of calcium. When initial pH of solution is increased between 2 and 6, the ion-exchange capacities of magnesium and calcium decrease a little. However, they are almost constant above pH 6 because of alkali buffer effect of ${\delta}-Na_2Si_2O_5$. In the thermodynamic studies, it was found that Gibbs free energies of reaction of calcium ion-exchange are larger than those of magnesium ion-exchange with inverse order of selectivity. The standard enthalpy and entropy of reaction of calcium ion-exchange are larger than those of magnesium ion-exchange.

  • PDF

Preparation of Calcium Alginate Fiber by Ion Exchange (이온교환에 의한 칼슘알지네이트 섬유의 제조)

  • Son, Tae-Won;Lee, Min-Gyeong;Han, Song-Jeong
    • Textile Coloration and Finishing
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • Calcium alginate fiber were prepared by wet spinning of various conditions, including different concentrations of sodium alginate solution and $CaCl_2$ concentrations for coagulating the fiber through an absorption of calcium ion. The absorption of calcium ion during the coagulating step lead to solidify the fibers by the replacement of sodium ion with calcium ion to produce some crosslinking. The concentration of calcium ion in the calcium alginate fiber seems to be well related to the mechanical and physical property of the fiber, such as fiber strength moisture regain, and degree of swelling. The tensile strength of calcium alginate fiber was increased along with the increasing amount of sodium alginate solution. According to EDS analysis, 7 wt% $CaCl_2$ coagulation bath resulted in more calcium ion in the fiber compared to 3 wt% $CaCl_2$ coagulation bath. The decomposition temperature of calcium alginate fiber was $199^{\circ}C$, which $14^{\circ}C$ higher than that of sodium alginate.

Isolation of a Calcium-Binding Fraction from a Hot-Water Extract of Smilax rhizoma (청미래덩굴 뿌리 열수 추출물로부터 칼슘 결합 물질의 분리)

  • Lee, Ji-Hye;Jeon, So-Jeong;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.17 no.6
    • /
    • pp.903-907
    • /
    • 2010
  • We isolated a calcium-binding substance from Smilacis rhizoma hot-water extract using ion exchange, normal phase HPLC, and gel filtration chromatography; fractions were analyzed for calcium-binding activity. Fractions (F6) with the highest calcium-binding activity from the resource Q coulmn were pooled and further purified on an $NH_2$ column. Two major peaks were separated and the fraction (F61) with the higher calcium-binding activity was then loaded onto a $Superdex^{TM}$ column. A single peak (F611) with calcium-binding activity was finally obtained. These results suggest that the isolated calcium-binding fraction could be used as a functional food additive, similar to a calcium supplement, in the food industry.

Calcium-binding Peptides Derived from Tryptic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1459-1464
    • /
    • 2004
  • The purpose of this research was to investigate the potential use of cheese whey protein (CWP), a cheese by-product. The physiological activity of calcium-binding peptides in CWP may be used as a food additive that prevents bone disorders. This research also examined the characteristics of calcium-binding peptides. After the CWP was heat treated, it was hydrolyzed by trypsin. Then calcium-binding peptides were separated and purified by ion-exchange chromatography and reverse phase HPLC, respectively. To examine the characteristics of the purified calcium-binding peptides, amino acid composition and amino acid sequence were analyzed. Calcium-binding peptides with a small molecular weight of about 1.4 to 3.4 kDa were identified in the fraction that was flowed out from 0.25 M NaCl step gradient by ion-exchange chromatography of tryptic hydrolysates. The results of the amino acid analysis revealed that glutamic acid in a calcium-binding site took up most part of the amino acids including a quantity of proline, leucine and lysine. The amino acid sequence of calcium-binding peptides showed Phe-Leu-Asp-Asp-Asp-Leu-Thr-Asp and Ile-Leu-Asp-Lys from $\alpha$-LA and Ile-Pro-Ala-Val-Phe-Lys and Val-Tyr-Val-Glu-Glu-Leu-Lys from ${\beta}$-LG.

Isolation of Calcium-Binding Peptides from Barley Protein Hydrolysates (보리 단백질 가수분해물로부터 칼슘 결합 물질의 분리)

  • Lee, Ji-Hye;Choi, Dong-Won;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.438-442
    • /
    • 2012
  • To prepare calcium-binding peptides as calcium supplement, barley proteins were hydrolyzed using Flavourzyme for 18 h and the hydrolysates were ultra-filtered under 3 kDa as a molecular weight. The resultant filtered peptides were fractionated using ion exchange and normal-phase high performance liquid chromatography. Then each fraction that was obtained was determined for its calcium-binding activity to isolate the calcium-binding peptides. As a result, the highest calcium-binding peptide fraction was obtained, and the results suggest that barley protein hydrolysates can be used as a calcium supplement.

Studies on the Regulation of Calcium Activity in Myocardial Contraction (심근 수축에 있어서 Calcium작용의 조절에 관한 연구)

  • Ko, Chang-Mann;Hong, Sa-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-120
    • /
    • 1990
  • Influences of trigger calcium on myocardial contraction from several sources were investigated on the frequency reduction-induced changes of contraction in rat left atria driven by electrical field stimulation. Rat atria elicited characteristic three phase-changes according to frequency reduction: the first rapid rise in twitch tension, the second transient fast decrease in tension and the third maintenance of twitch tension at about 200% of resting tension during high frequency. Caffeine treatment enormously suppressed the frequency reduction-induced twitch tension increase. The atrial contraction during high frequency vanished after verapamil treatment. But, during low frequency, atrial contraction revived in the presence of verapamil. Ouabain treatment and sodium depletion in superfusing solution abolished the characteristic second phase with slow frequency. These results suggest that slow calcium channel is an indispensable calcium entry route and calcium release from sarcoplasmic reticulum is an major source for trigger calcium in cardiac contraction. And sodium-calcium exchange has a modulatory roles in the regualtion of trigger calcium according to the changes of intracellular sodium concentration.

  • PDF

Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes (심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할)

  • Park, Choon-ok;Kim, Yang-mi;Haan, Jae-hee;Hong, Seong-geun
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

The Pharmacological Studies on the Origin of Calcium ion in Myocardial Contraction (심근 수축에 있어서 Calcium 이온의 기원에 관한 약리학적 연구)

  • Ko, Chang-Mann;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 1994
  • Na-Ca exchange transports calcium ion either into (reverse mode Na-Ca exchange) or out of the cell (forward mode Na-Ca exchange) according to the direction of driving force produced by the changes in ratio of intra- and extra-cellular Na concentrations. Thus, Na-Ca exchange is regarded as the regulator of myocardial contraction. However, the existence of reverse mode Na-Ca exchange and its role in myocardial contraction is still questioned. Present study was performed to identify the presence of reverse mode Na-Ca exchange and its possible involvement in the regulation of myocardial contraction in rat heart. Using the left atria of rat, contraction was induced by electrical field stimulation (EFS, 0.5 msec duration and supramaximal voltage). Changing of the stimulation frequencies from resting 4 Hz to 0.4, 1 or 8 Hz caused typical negative staircase effect in twitch tension, but $^{45}Ca$ uptake showed bimodal increase. When the stimulation frequency was abruptly changed from 4 Hz to 0.4 Hz the atrial twitch tension showed three phased-enhancement, that is, the initial rapid increase (the first phase) followed by rapid decrease (the second phase) and stabilization (the third phase). $^{45}Ca$ uptake was equivalent to tension, i.e. initial significant increase in first 30 second and then decrease. Benzamil treatment abolished the first phase of increase in a dose dependent manner from $10^{-5}\;to\;3{\times}10^{-4}M.$ Bay k 8644 $(3{\times}10^{-5}M)$ treatment enhanced the inotropy induced by frequency reduction and abolished the second and third phase decreases. Benzamil treatment also suppressed the contraction stimulated by Bay K 8644. Although the contraction at 4 Hz stimulation was completely abolished by verapamil $3{\times}10^{-5}\;M$ pretreatment, the contraction reappeared as soon as the stimulation frequency was changed into 0.4 or 1 Hz and interstingly,$^{45}Ca$ uptake were significantly higher than no treatment. From these results, it is concluded that reduction of stimulation frequency causes calcium influx by the reverse mode Na-Ca exchange, resulting in initial rapid increase of twitch tension. then it turns into forward mode exchange to efflux the calcium, resulting in decrease of the twitch tension in left atria of rat.

  • PDF

Industrial Waters of Taegu City and on the Objection of Iron for Water Softening (大邱市의 工業用水와 鐵의 軟化障害에 關하여)

  • Lee, Dae-Soo;Hong, Soon-Yung
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.117-121
    • /
    • 1962
  • The waters throughout Taegu area for 87 points were analysed and according to the analytical data, following unfavorable characteristics for industrial uses were given: (1)Shows strong hardness, (2)Has high ratio of ignition residue to evaporation residue, (3) pH value is over 7, (4) Contains considerable quntities of iron.And then investigated the exchange rate and regeneration level of iron ion using cation exchange resin, Lewatit KS.When the hard water containing 2.2 ppm of iron with 18.4 ppm of calcium and 6.2 ppm of magnesium was passed through the ion exchange resin under $3cc/cm^2/min$ in exhaustant flow rate, exchange rate of iron reached to 42% after 300 hours flow. The exchange efficiency shows abrupt decreasing in initial stage of flow up to 100 hours flow. The exchanger which contains iron was regenerated with 10% sodium hydroxide aqua solution under SV (space velocity) 4. By this method, 57% of iron was eliminated from exchanger while calcium and magnesium are removed as much as 85% and 87% respectively.

  • PDF

$Na^{+}/Ca^{2+}$ Exchange System in Atrial Trabeculae and Vascular Smooth Muscle of the Rabbit (토끼 심방근 및 혈관 평활근에서의 $Na^{+}/Ca^{2+}$ 교환기전에 관한 연구)

  • Kim, Hee-Ju;Moon, Hyung-Ro;Earm, Yung-E;Ho, Won-Kyung
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.13-29
    • /
    • 1988
  • In order to elucidate the regulatory mechanism of intracellular calcium ion concentrations, contractions or contractures induced by $Na^{+}-removal$, calcium-application or ouabain-treatment as an index of $Na^+/Ca^{2+}$ exchange activity were studied in atrial muscle or vascular smooth muscle (aorta and renal artery) of the rabbit. The magnitude of low sodium contractures in atrial trabeculae increased with sigmoid shape when external sodium concentrations were reduced to sodium-free condition, whereas that of calcium contracture intensified in a parabolic pattern when external calcium concentrations were elevated to 8 mM. $Na^{+}-removal$ contractures were induced in a duration-dependent manner to $K^{+}-free$ exposure and same findings were observed with ouabain treatment. $Na^{+}-free$ contractures were not affected by verapamil treatment, but stimulated by $100{\mu}M\;Mn^{2+}$ and inhibited by high concentrations of $Mn^{2+}\;(2{\sim}8mM)$ in a dose-dependent manner. Ryanodine which is known to suppress the release of calcium from internal store abolished spontaneous twitch contractions induced by $K^{+}-free$ solution, but had no effect on the development $Na^{+}-free$ contractures. Na-free contractures were not always induced in vascular smooth muscle preparations. Contractures by $O\;mM\;Na^+$ were usually seen in aorta, but not often in renal artery.$50\;mM\;K^+$, noradrenaline (NA) and angiotensin II (AII) always evoked very large contraction in all preparations of vascular smooth muscle. Contractures developed by $O\;mM\;Na^+$ were not sensitive to verapamil treatment as in atrial trabeculae, but were abolished by $100{\mu}M\;Mn^{2+}$. In contrast to $Na^{+}-free$ contractures, $Mn^{2+}(100{\mu}M)$ had no effect on the contractures induced by NA or 50 mM$K^+$. Caffeine in the concentration of 10 mM evoked transient contracture in the distal renal artery. The rate of spontaneous relaxation in caffeine contracture was dependent upon the concentrations of external sodium, and had double component of relaxation when the rate of relaxation was plotted in the semilogarithmic scale of relative tension versus time. Especially late components of relaxation had more direct relation to $Na^+$ concentrations. It could be concluded that $Na^+/Ca^{2+}$ exchange mechanism in the heart has a large capacity, inhibited by $Mn^{2+}$ but not by verapamil and ryanodine, while $Na^+/Ca^{2+}$ exchange system in vascular smooth muscle has a very low capacity especially in small artery, inhibited by low concentration of $Mn^{2+}\;(100{\mu}M)$ but not affected by verapamil and ryanodine.

  • PDF