• Title/Summary/Keyword: Excess oxygen

Search Result 218, Processing Time 0.026 seconds

Thermal Stability of $\textrm{RuO}_2$ Thin Film Annealed at High Temperature in Oxygen Atmosphere ($\textrm{RuO}_2$ 박막의 산소 분위기 열처리시 열적 안정성에 관한 연구)

  • O, Sang-Ho;Park, Chan-Gyeong;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1090-1098
    • /
    • 1998
  • $RuO_2$ thin films were deposited on Si and Ru/Si substrates by rf magnetron reactive sputtering and annealed in oxygen atmosphere(1atm) to investigate their thermal stability and diffusion barrier property. $RuO_2$ thin films were thermally stable up to 700\ulcorner for 10min. in oxygen atmosphere and showed excellent barrier property against the interdiffusion of silicon and oxygen. After annealing at $750^{\circ}C$ , however, volatilization to higher oxide occurred at the surface and inside of $RuO_2$ thin film and diffusion barrier property was also deteriorated. When annealed at $800^{\circ}C$, $RuO_2$thin film showed a different microstructure from that of $RuO_2$ thin film annealed at 75$0^{\circ}C$. It is likely that surface defect structure of $RuO_2$, $RuO_3$, and excess oxygen had an influence on the mode of volatilization with increasing annealing temperature.

  • PDF

Paraquat-resistant lines in Pisum sativum cv. Alaska: biochemical and phenotypic characterization

  • Haque, Md. Emdadul;Yoshida, Yusuke;Hasunuma, Kohji
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • In plants, the oxygen generated by photosynthesis can be excited to form reactive oxygen species (ROS) under excessive sunlight. Excess ROS including singlet oxygen ($^1O_2$) inhibit the growth, development and photosynthesis of plants. To isolate ROS-resistant crop plants, we used paraquat (PQ), a generator of $O_2{^-}$ as a source of screening and mutagen, and obtained two PQ-resistant lines in Pisum sativum, namely R3-1 and R3-2. Both lines showed greater resistance to PQ than their wild type (WT) siblings with respect to germination, root growth, and shoot growth. Biochemical analysis showed differences in these lines, in which ROS-scavenging enzymes undergo changes with a distinguishable increase in Mn-SOD. We further observed that the cytosolic catalases (CATs) in leaves in both lines were shifted in a native-PAGE analysis compared with that of the WT, indicating that the release of bound $^1O_2$ was enhanced. Phenotypic analysis revealed distinguishable differences in leaf development, and in flowering time and position. In addition, R3-1 and R3-2 showed shorter individual inter-node lengths, dwarf plant height, and stronger branching compared with the WT. These results suggested that PQ-induced ROS-resistant Pisum have the potential pleiotropic effects on flowering time and stem branching, and that ROS including $^1O_2$ plays not only important roles in plant growth and development as a signal transducer, but also appears as a strong inhibitor for crop yield.

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Changes in Cytochrome c Oxidase and NO in Rat Lung Mitochondria Following Iron Overload

  • Kim, Min-Sun;Hong, Min-A;Song, Eun-Sook
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • In this study, the effects of iron on cytochrome c oxidase (CcO) in rat lung mitochondria were examined. Similar to liver mitochondria, iron accumulated considerably in lung mitochondria (more than 2-fold). Likewise, the reactive oxygen species and nitric oxide (NO) content of mitochondria were increased by more than 50% and 100%, respectively. NO might be produced by nitric oxide synthase (NOS), eNOS and iNOS type, with particular contribution by NOS in mitochondria. The respiratory control ratio of iron overloaded lung mitochondria dropped to nearly 50% due to increased state 4. Likewise, cytochrome c oxidase activity was lowered significantly to approximately 50% due to excess iron. Real-time PCR revealed that the expression of isoforms 1 and 2 of subunit IV of CeO was enhanced greatly under excess iron conditions. Taken together, these results show that oxidative phosphorylation within lung mitochondria may be influenced by iron overload through changes in cytochrome c oxidase and NO.

Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

  • Lee, Ki-Mo;Kang, Hyung-Sik;Yun, Chul-Ho;Kwak, Hahn-Shik
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.492-498
    • /
    • 2012
  • Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.

Properties of Powder and Fluorescence as a Function of Oxygen Partial Pressure in ZnO : Zn System Prepared by Glycine Nitrate Process (GNP 방식으로 제초한 ZnO : Zn의 산소분압에 따른 분말특성 및 형광특성)

  • Choi, Woo-Sung;Park, Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.378-382
    • /
    • 1999
  • 저 전압용 형광체는 최근에 활발히 연구가 진행되고 있으며 가장 대표적인 형광체가 ZnO Zn 녹색 형광체이다. ZnO : Zn 형광체는 자체발광형 형광체로써 ZnO을 환원분위기 하에서 열처리를 함으로써 얻을 수 있다. 본 연구에서는 자발착화 연소반응법(Glycine Nitrate Process)을 이용하여 ZnO : Zn 분말을 합성하고 형광특성 및 분말특성을 알아보았다. 출발물질로는 Zn Nitrate와 Glycine을 이용하였고 자발연소 반웅이 발생하는데 적절한 글리신의 양을 확인하기 위해서 글리신과 양이온의 비를 변화시키며 ZnO를 합성하였다. 그리고 Zn Excess가 생겨난 앙과 그에 따른 형광특성을 관찰하기 위해 $N_2$ 분위기 에서 각기 50$0^{\circ}C$, 75$0^{\circ}C$, 95$0^{\circ}C$의 온도에서 열처리를 행하였다. 제조된 ZnO 분말의 입자형태와 결정상 태는 SEM과 XRD를 이용하여 분석하였고 TG-DTA를 측정하여 열처리온도에 따른 질량감소(Zn excess)를 관찰하였다. 또 Particle size analyzer로 분말의 크기를 알아보았고 형광체로써의 발광특성을 살펴보기 위해 PL을 이용하여 발광피크를 관찰하였다.

  • PDF

A study on reduction of excess sludge in activated sludge system from a petrochemical plant using electro fenton process (전기펜톤공정을 이용한 석유화학공장 폐활성슬러지의 감량화 가능성 평가)

  • Chung, Chong Min;Kim, Kyung Il;Shim, Natalia;Park, Chul Hee;Lee, Sang Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.669-678
    • /
    • 2009
  • The reduction of excess activated sludge from petrochemical plant was investigated by the electro fenton (E-Fenton) process using electrogenerated hydroxyl radicals which lead to mineralization of activated sludge to $CO_2$, water and inorganic ions. Factors affecting the disintegration efficiency of excess activated sludge in E-Fenton process were examined in terms of five criteria: pH, $H_2O_2/Fe^{2+}$ molar ratio, current density, initial MLSS (mixed liquid suspended solids) concentration, $H_2O_2$ feeding mode. TSS total suspended solid and $TCOD_{cr}$ reduction rate increased with the increasing $H_2O_2/Fe^{2+}$ molar ratio and current density until 42 and $6.7 mA/cm^2$, respectively but further increase of $H_2O_2/Fe^{2+}$ molar ratio and current density would reduce the reduction rate. On the other hand, as expected, increasing pH and initial MLSS concentration of activated sludge decreas TSS and $TCOD_{cr}$ reduction rate. The E-Fenton process was gradually increased during first 30 minutes and then linearly proceed till 120 minutes. The optimal E-Fenton condition showed TSS reduction rate of 62~63% and $TCOD_{cr}$ (total chemical oxygen demand) reduction rate of 55~56%. Molar ratio $H_2O_2/Fe^{2+} = 42$ was determined as optimal E-Fenton condition with initial $Fe^{2+}$ dose of 5.4 mM and current density of $6.7{\sim}13.3 mA/cm^2$, initial MLSS of 7,600 mg/L and pH 2 were chosen as the most efficient E-Fenton condition.

Electrical properties and preparation of PLZT thin film by MOCVD using ultrasonic spraying (초음파분무 MOCVD법에 의한 PLZT 박막의 제조 및 전기적 특성)

  • 김기현;이진홍;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.184-189
    • /
    • 2002
  • The electrical and optical properties of $(Pb_{0.91}La_{0.09})(Zr_{0.65}Ti_{0.35})O_3$(PLZT) thin films by MOCVD using ultrasonic spraying were investigated. To compensate the Pb loss by evaporation, 5 and 10 wt% of excess Pb was added to 0.2 M precursor. After deposition of films on ITO-coated glasses in oxygen atmosphere for 30 min, films were heated by in-situ RTA (rapid thermal annealing) method. When the films were heat treated at $600^{\circ}C$, perovskite single phase was obtained. The optical property of the film with 10 wt% excess Pb was excellent showing about 84 % of transmittance near 520 nm. The dielectric constant of the film was about 308 and the leakage current of the film was lower than the Pb excess 0, 5 wt% PLZT thin films.

Electrical Conductivity Revisited in Excess BaO into BaTiO3 (BaO 과잉량에 따른 BaTiO3의 전기전도도)

  • Yeo, Hong-Goo;Kuk, Min-Ho;Kim, Myong-Ho;Song, Tae-Kwon;Bae, Dong-Sik;Park, Tne-Gone;Lee, Soon-Il;Randall, Clive A.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.308-313
    • /
    • 2005
  • In this study the electrical conductivity of excess BaO in $BaTiO_3$ was measured to investigate the relationship between defects and solubility in the temperature range of $900^{\circ}C$ to $1300^{\circ}C$ under various oxygen partial pressure. First of all, quenched $BaTiO_3$ powders of various Ba/Ti ratios were analysed by X-ray diffraction to confirm whether second phase is formed or not. As the results, we observed the solubility of BaO in the temperature range of $1200^{\circ}C$ to $1400^{\circ}C$, and it was also found that the conductivity minima move to lower $PO_2$ with increasing excess BaO within solubility limit.

Effect of RF Powers on the Electro·optical Properties of ZnO Thin-Films (RF 출력이 ZnO 박막의 전기·광학적 특성에 미치는 영향)

  • Shin, Dongwhee;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.508-512
    • /
    • 2012
  • ZnO thin films were grown on a sapphire substrate by RF magnetron sputtering. The characteristics of the thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL), and Hall effect. The substrate temperature and growth time were kept constant at $200^{\circ}C$ at 30 minutes, respectively. The RF power was varied within the range of 200 to 500 W. ZnO thin films on sapphire substrate were grown with a preferred C-axis orientation along the (0002) plan; X-ray diffraction peak shifted to low angles and PL emission peak was red-shifted with increasing RF power. In addition, the electrical characteristics of the carrier density and mobility decreased and the resistivity increased. In the electrical and optical properties of ZnO thin films under variation of RF power, the crystallinity improved and the roughness increased with increasing RF power due to decreased oxygen vacancies and the presence of excess zinc above the optimal range of RF power. Consequently, the crystallinity of the ZnO thin films grown on sapphire substrate was improved with RF sputtering power; however, excess Zn resulted because of the structural, electrical, and optical properties of the ZnO thin films. Thus, excess RF power will act as a factor that degrades the device characteristics.